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Abstract—Wireless LAN (WLAN) based networks can rely
on the concept of Automatic Repeat Request (ARQ) to
overcome temporary channel outages, such as those due to
interference. However, the used acknowledgement scheme for
unicast transmissions blocks other transmissions until a message
has either been successfully transmitted or until the retry limit
has been reached. We investigate this head of line blocking
problem, its impact, and first steps towards a final solution.
As a research methodology, we build upon an analytical
model, computer simulations, and also experimentation in a
lab environment. We consider the effects for a single node in
a small and static network as well as studying the application
layer performance in a highly dynamic network – we investigate
Vehicular Ad Hoc Networks (VANETs) as a prime example –
spanning several kilometers. Aside from considering the case of
malicious users conducting easy active and passive attacks, we
show that in highly dynamic networks this blocking behavior
can (massively) be observed as local topologies change. Here, the
discussed effects can lead to massive message loss and increased
latencies in the order of seconds.

Index Terms—IEEE 802.11, Vehicular Networking, EDCA,
Unicast

I. INTRODUCTION AND MOTIVATION

We investigate the problem of head of line blocking when
using unicast transmissions in highly dynamic Wireless LAN
(WLAN) environments. As a prime example, we focus on
Vehicular Ad Hoc Networks (VANETs), even though all our
investigations also apply to other application domains with
highly dynamic topologies.

Wireless communication based on IEEE 802.11 WLAN has
become the standard for establishing vehicular networks [1].
Building on IEEE 802.11, the U.S. DSRC/WAVE protocol
stack [2] and the European ETSI ITS-G5 protocol suite [3]
have been defined, both inheriting the physical and the MAC
layer of IEEE 802.11.

Traditionally, the IEEE 802.11 WLAN MAC layer is de-
signed to operate in the context of a Basic Service Set (BSS),
a set of mobile nodes that have synchronized to use a common
set of parameters [4]. However, joining such a network involves
a message exchange procedure that has been found too time
consuming for vehicular networks. Hence, the WLAN standard
has been amended in IEEE 802.11p to allow operation in what
was named “outside the context of a BSS” (OCB) mode [5].
This mode of IEEE 802.11p avoids the need for authentication
to other nodes as well as the need to scan for, join, or

Copyright (c) 2018 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org. The authors are
with the Heinz Nixdorf Institute and Dept. of Computer Science, Paderborn
University, Germany ({klingler,dressler,sommer}@ccs-labs.org).

associate to a BSS, either in infrastructure mode or in ad hoc
mode. These modifications make IEEE 802.11 a reliable basis
for vehicular communication: Commodity WLAN network
interface cards [6] can be used with little modifications to the
driver. The standard also supports low latency data transmission,
which is crucial for most types of applications in vehicular
networks. It is therefore the standard extension underlying both
the aforementioned U.S. and European VANET standards.

One of the major tasks of the MAC is error control, i.e., to
ensure reliable frame transmission by using retry mechanisms –
at least for unicast transmissions. IEEE 802.11 (and thus, by
extension, IEEE DSRC/WAVE and ETSI ITS-G5) can rely
on a simple Automatic Repeat Request (ARQ) error control
scheme: by default, any individually addressed frame will be
kept as the head of the transmit queue until an acknowledgment
(ACK) frame is received. If no ACK frame is received for a
pre-defined duration, the frame is automatically retransmitted
until an ACK frame is received, or until a retransmission limit
is reached. This behavior leads to the so-called head of line
(HOL) blocking problem: One frame delays the transmission
of other frames. Moreover, the waiting time between retries of
frames increases according to an exponential backoff algorithm
to lower the channel load and, thus, stabilize the network, which
increases the probability for a successful frame transmission.
In summary, any transmit queue that is waiting for an ACK
frame for a unicast frame is stalled – this queue will neither
transmit broadcast frames, nor any other individually addressed
frame to another node.

The head of line blocking effect has been identified in the
early days of WLANs [7] and proposals have been made to
create an alternative MAC layer that monitors the individual
wireless stations of a BSS and maintains separate transmit
queues. Such a MAC layer can then defer re-transmissions to
bad stations until the estimated end of a (presumed) burst error.
However, the key assumption of such proposals has always
been that lost frames are due to collisions or burst errors in
the channel. For the envisioned target scenario at that time,
this was a very reasonable assumption as nodes were meant
to maintain a relatively static topology. Still, even in static
networks the effect is rather easy to trigger. All that is needed
is to simply provoke a node to send a unicast data frame
to a node that is not there. Alternatively, a node performing
selective jamming of some unicast acknowledgements can
trigger the same effect with potentially even bigger impact
(see Section III-F). Finally, a completely passive denial of
service attack can be realized by the destination of a unicast
transmission: by simply not acknowledging another node’s
unicast transmission. Yet, the impact of the effect of head of
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line blocking has been considered to be no worse than reducing
the attainable throughput over the wireless channel. This has
led to the effect being widely ignored in standardization.

For safety applications and, more so, in highly dynamic
environments such as VANETs, however, the effect of head
of line blocking can be disastrous. When triggered, unneces-
sary delays of Cooperative Awareness Messages (CAMs) or
Basic Safety Messages (BSMs) are possible, which negatively
influences safety applications. Moreover, as we will show, the
effect is frequently triggered in networks of high topology
dynamics when nodes attempt unicast transmissions to other
nodes – other cars, Internet Access Points (APs), or dedicated
Roadside Units (RSUs) – that they wrongly consider to still be
neighbors. Such frames will never be acknowledged, remaining
at the head of the transmit queue of the sender until it expires.

Head of line blocking not only delays the unicast transmis-
sion in question but all packets waiting in the same queue if
a node adheres to the Enhanced Distributed Channel Access
(EDCA) system of WLAN [4]. Which queue is blocked depends
on the Access Category assigned to the frame. Yet, with
only four categories defined in WLAN, a large number of
different applications will likely share a single queue. As
a consequence, a single blocked queue impacts a multitude
of related applications (for example, all safety applications).
Without further information, a sender can also not readily
determine whether the receiver suffers from interference that,
indeed, keeps it from replying with ACKs, or whether ACKs
are selectively suppressed, making passive attacks hard to detect
reliably.

Even worse, the impact of head of line blocking is also long-
lasting. In highly dynamic network topologies, the destination
node is often simply no longer a neighbor and remains per-
manently unreachable, e.g., due to radio signal shadowing [8].
This causes the transmit queue to block until the maximum
number of retries have been exceeded, wasting channel capacity,
keeping other nodes from transmitting, and (even worse)
keeping the same node from transmitting potentially safety-
critical information.

Building upon our earlier work [9], we point out a way
towards a general solution based on an investigation of the
effects of head of line blocking in more breadth and depth:
We expand our focus from specialized hardware and settings
of VANET Field Operational Tests (FOTs) to that of regular
commercial off-the-shelf WLAN adapters. We further expand
the depth of our studies, investigating both more general metrics
to study the true impact on the application layer as well
as more specific metrics to investigate the reported effects.
We also take great care to cross-validate every step in our
investigation between analytics, computer simulations, and
hardware experiments. We furthermore report on a completely
new experimental and analytical study on the behavior of
commodity WLAN cards under active attacks. In order to
give some insights into possible algorithmic solutions to the
problem, we also investigate a rather simple protocol that
helps overcoming head of line blocking issues. We see this
protocol as a basis on which future work can build upon to
fully eliminate its negative effects in highly dynamic WLAN
environments.

Our main contributions can be summarized as follows:
• We first investigate the impact of head of line blocking

in a small and static network – analytically, in computer
simulations, and in hardware experiments (Section III);

• we continue our study by evaluating the backoff behavior
of commodity WLAN cards when subjected to selective
jamming of acknowledgements, validating experimental
results against analytical predictions (Section III-F);

• in a final set of experiments, we assess the macroscopic
view in presence of head of line blocking for a full
VANET application scenario of a highly dynamic network
(Section IV).

II. RELATED WORK

VANETs are a prime example of highly dynamic wireless
networks and an emerging technology on the verge of wide
scale real world deployment [1], making them a worthwhile
sample use case of this broader category. Typical applications of
VANETs range from safety, to traffic efficiency, and to comfort
applications [10] each having different requirements for the
underlying communication stack, e.g., delay, reliability, and
goodput. To support this variety of application domains, several
communication patterns have been found to be beneficial in
VANETs [1], [11].

One of the most prominent communication patterns for safety
messages is beaconing – the process of sending periodic 1-hop
broadcasts of small status reports of vehicles [12]. This kind of
information exchange (including current position, speed, and
driving direction) is standardized in Europe in the ETSI ITS-G5
protocol stack [3] and in the U.S. in the IEEE DSRC/WAVE
protocol suite [2]. These periodic CAM or BSM broadcasts,
respectively, do not require any kind of acknowledgements, so
they are not impacted by the head of line blocking problem
discussed in this work.

Conversely, information exchange for comfort or efficiency
applications commonly involves vehicles communicating with
either a dedicated vehicle, an RSU, or a gateway. This
connection-like oriented communication pattern often involves
unicast routing over multiple hops [13], [11]. Many of those
routing protocols have been originally developed for Mobile
Ad Hoc Networks (MANETs); and part of them can be applied
to VANETs as well. Also, aside from comfort and efficiency
applications, the unicast communication principle is also used in
the literature for specific VANET applications like Geocasting
and platooning [14], [15]. Indeed, several detailed surveys on
unicast routing protocols for VANETs can be found in the
literature: Li and Wang [16] give an overview about different
routing strategies and name popular routing protocols according
to their communication type. Bernsen and Manivannan [17]
classify and characterize available unicast routing protocols
for VANETs and provide a qualitative comparison among
those. Sichitiu and Kihl [18] focus on the taxonomy of
VANET applications and study the requirements from an
underlying network. This underlines the prevalence of the
unicast communication pattern even protocol designs targeting
highly dynamic networks.

One step further, a number of designs explicitly target
or, indeed, rely on unicast pattern and its acknowledgement
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mechanism – both for supporting multi-hop routing and for
single-hop transmissions. For example, approaches have been
made to mitigate packet duplication of unicast routing protocols
introduced by the two (hop-by-hop and end-to-end, respectively)
recovery mechanisms of the MAC layer and the routing
protocol [19]. Similarly, Han et al. [20] build on the MAC
retry mechanism based on ACKs and design an improved retry
mechanism based on NACKs (negative acknowledgements). It
allows an application layer message to quickly and repeatedly
be retransmitted until it is eventually (successfully) received
by its indented destination. As a third example, Xie et al. [21]
present a two-dimensional Markov chain model based on the
IEEE 802.11 model of Bianchi [22] to investigate the delay of
channel access using a stochastic road traffic model. Again, a
central assumption is that unicast is needed for reliable VANET
protocol design and that this implies retransmissions performed
in the MAC layer.

However, when IEEE 802.11 was designed many years ago,
the exponential backoff strategy for unsuccessful unicast com-
munication triggered by lost acknowledgments was designed
to solve channel congestion problems. The node topology was
assumed to be relatively static, thus the most common causes
for lost acknowledgements were assumed to be hidden terminal
situations and, more importantly, an overloaded channel.

In our work we show that for VANETs this assumption does
not hold anymore. Indeed, reliable unicast communication
drastically lowers the performance of VANETs when unicast
packets are sent to nodes that are out of range. We also show
that this is a common occurrence in VANETs.

III. SMALL AND STATIC NETWORKS

We first investigate the impact of the discussed head of
line blocking effect in a small and static network that mimics
topology dynamics; (A) analytically, (B) in experiments with
off-the-shelf and FOT-ready WLAN cards, and finally (C) in
computer simulations.

A. Analytical Evaluation

In the following, without loss of generality, we focus on
an OFDM PHY with 10 MHz bandwidth as specified in the
current version of the IEEE 802.11 standard [4]. Following both
the values (and the formalism) introduced in the standard, we
adopt the following PHY timing parameters: Tpreamble = 32 µs,
Tsignal = 8 µs, and Tsym = 8 µs. MAC parameters are also set
according to the standard, to tSIFS = 32 µs, tslot = 13 µs, and
trx_delay = 49 µs. We further assume that the RTS threshold is
set above the frame size, so that no RTS/CTS procedure is
invoked, as well as (otherwise) empty EDCA queues and an
idle channel.

The time to transmit data is calculated according to the
PLME-TXTIME.confirm primitive described in the standard [4,
Section 18.4.3]. When transmitting headers and payload of
size l at 6 Mbit/s (thus NDBPS = 48 bit), this time can be
calculated as

ttx(l) = Tpreamble + Tsignal +

⌈
16 + l + 6

NDBPS

⌉
Tsym. (1)

For a broadcast packet with a payload of l = 2400 bit, we
calculate ttx(2400 bit) = 448 µs. Similarly, for l = 112 bit, the
size of an ACK frame, we obtain ttx(112 bit) = 64 µs.

The frame exchange sequence for a reliable unicast transmis-
sion of a frame is: send data, wait for a SIFS, send ACK. Thus,
the lower bound for the duration of a unicast transmission
(which might be blocking a queue) is achieved if the channel
has been idle for some time and the transmission is immediately
acknowledged; it can be calculated as

tbest = ttx(2400 bit) + tSIFS + ttx(112 bit) = 544 µs. (2)

If we now focus on the case of a node trying to send such a
unicast frame to a node that does not exist, we have to factor
in the time spent for retries, each waiting for an ACK that does
not arrive within tACK_wait, as well as the time spent in backoff.
According to the standard [4, Section 9.3.2.8], tACK_wait can
be calculated as

tACK_wait = tSIFS + tslot + trx_delay = 94 µs. (3)

Backoff times are set to k times tslot, the number k being
randomly drawn from a contention window (CW), which is
initially set to CWmin; in the worst case, the maximum number
is drawn each time. After each unsuccessful transmission (i.e.,
no ACK was received) the contention window size CW is
updated to 2(CW + 1) − 1, up to CWmax. Only when the
packet is finally deleted from the transmit queue, CW is reset
to CWmin. Thus, the upper bound of time spent for backoff
alone during n attempts to transmit can be calculated as

tCW(n) = tslot×
n−1∑
i=0

min
{

2i
(
CWmin + 1

)
− 1, CWmax

}
. (4)

Similarly, as backoff values are drawn uniformly from the CW
for every attempt, the mean value of the distribution of waiting
times can be calculated by halving tCW.

Before decrementing the backoff counter, the channel needs
to be idle for at least the duration of an Arbitration Interframe
Space (AIFS). If we assume the sender to be operating in
OCB mode and using Access Category AC_BE, it will wait for
AIFSN = 6 slots [4, table 8-106], resulting in

tAIFS = tSIFS + 6× tslot = 110 µs. (5)

Default values suggested by the standard [4, pages 1623
and 2425] are: CWmin = 15, CWmax = 1023, and
dot11ShortRetryLimit = 7 retransmission attempts. This con-
figuration has been found to be beneficial to protocol operation
in VANETs [23]. However, we discovered in our measurements
that the used wireless cards perform 9 retransmission attempts
if no ACK is received (independent of their configuration).
Thus, we also use this value in the following calculations.

Taken together, the upper bound for the duration of a unicast
transmission is achieved if the channel only just turned idle
and the transmission remains unacknowledged for 10 attempts,
each time choosing the maximum backoff time from the CW;
it can be calculated as

tworst = 10
(
tAIFS + ttx(2400 bit) + tACK_wait

)
+ tCW(10)

= 72 742 µs.
(6)
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Thus, each unicast sent to a node that no longer exists
(whether sent in error or provoked maliciously) blocks any
transmissions from the same queue for an average of around
40 ms and up to approx. 73 ms. Note that this effect is
cumulative if multiple such frames are queued.

B. Experimental Study

We confirmed both the presence and the analytically derived
duration of the blocking effect in real world experiments, as
we will detail in the following.

As our device under test, we investigated an embedded
system running Linux 3.18 based on [24] and outfitted with an
Compex WLM200N5-23ESD miniPCI card using an Atheros
AR9220 chipset with the ath9k driver. Due to its combination
of chipset and driver, it can serve as a good specimen of typical
WLAN cards. Moreover, it has already been used as a reliable
basis for building an ITS prototype [6] for FOTs, as it allows
tuning the radio to ITS frequencies in the 5.9 GHz band as well
as using the IEEE 802.11p bandwidth of 10 MHz. In previous
work [9] we confirm that the effect of head of line blocking
is equally present in specialized equipment designed for ITS
FOTs worldwide like the Cohda Wireless MK5.

We modified the Linux kernel to report how long each frame
was delayed in a transmit queue (from entering into the queue
to it being deleted). We then configured an independent virtual
interface set to monitoring mode to record these statistics.
Similarly, the receiver used information made available from a
modified kernel to derive the number of backoff slots chosen
for a frame. Additionally, an independent monitoring node with
a wireless card tracked the channel load ρ = tbusy/(tbusy + tidle)
as the fraction of the time the wireless channel was sensed
busy.

To investigate the interplay of communication modes, we
ran a process on the device which periodically creates per-
mutations of three independent types of messages to model
three different applications sending traffic over the wireless
channel. For simplicity we call these App 1, App 2, and
App 3. The process enqueues three messages simultane-
ously and then waits for the transmission to conclude to
saturate an otherwise clear channel. The ordering of mes-
sages is random. A sample ordering of messages looks like
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

We configured the physical layer according to the specifi-
cations used in the analytical study: a 10 MHz wide channel
at 5.890 GHz, not using RTS/CTS, and transmitting at a rate
of 6 Mbit/s. The MAC layer was configured to send packets
using a TXOP value of 0 (one post-transmit backoff after
every frame) and Access Category AC_BE (that is, an initial
contention window size of 15 slots, a maximum contention
window size of 1023 slots, and an AIFSN value of 6 slots).

Our baseline scenario consists of two experiments: In the
first experiment (Exp 1), all three applications sent broadcast
packets. In the second experiment (Exp 2), App 1 was changed
to send unicast packets. As an alternative scenario (denoted
as ghost) we changed App 3 to transmit data to a device that
was no longer there and repeated the previous two experiments
(as Exp 3 and Exp 4). For this, we manually inserted entries

Table I
OVERVIEW OF EXPERIMENTS

scenario experiment App 1 App 2 App 3

baseline Exp 1 broadcast broadcast broadcast
Exp 2 unicast broadcast broadcast

ghost Exp 3 broadcast broadcast lost unicast
Exp 4 unicast broadcast lost unicast

app. retry Exp 5 broadcast broadcast lost unicast
Exp 6 unicast broadcast lost unicast

into the ARP tables of nodes, thus capturing the scenario of
a neighbor having existed previously before moving out of
reception range. This represents the case of a vehicle trying
to send data to a former neighbor (which has been shown to
happen frequently in a VANET [25]). We then build on this
scenario to investigate the results of two more experiments
using a different retry strategy (Exp 5 and Exp 6). An overview
of all experiments and their configurations is shown in Table I.

C. Computer Simulation

We validate our results in the small and static network
by cross-checking the analytical and experimental results
against a computer simulation of the same scenario. We set
up simulations in the Veins Open Source1 vehicular network
simulation framework [26] version 4.4. Along with many other
models, Veins provides realistic channel access models based
on IEEE 802.11p and IEEE 1609.4. We extended the IEEE
802.11p MAC layer in order to support unicast transmission
according to the IEEE 802.11 HCF. As in the experiments,
the MAC layer was configured to send packets using a TXOP
value of 0 (one post-transmit backoff after every frame) and
Access Category AC_BE (that is, an initial contention window
size of 15 slots, a maximum contention window size of 1023
slots, and an AIFS value of 6 slots to match the settings used
in the measurements).

In the simulation, all three types of messages used a payload
length of 2400 bit to saturate an otherwise clear channel. We
perform the same set of experiments as in the experimental
study outlined in Table I.

D. Results

Figure 1 illustrates the results of analytics, measurements,
and computer simulations as empirical Cumulative Distribution
Functions (eCDFs). Aside from little delays introduced by the
software, queueing delays observed in the measurements agree
very well with those in computer simulation, as well as with
those predicted by analytics: The delays of frames fall into
three clear categories according to how many (zero, one, or
two) frames were queued before.

When sending only broadcast frames (baseline scenario,
Exp 1) all data took either

t0 = ttx(2400 bit) = 448 µs (7)

1http://veins.car2x.org
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Figure 1. TX queuing delay in the baseline scenario.

to send (if no frame was already queued) or it had to wait for
data of one or two of the other applications to be sent.

When waiting for data of one application, this additional
delay is characterized by a uniformly distributed random value
of U(0, CWmin) slots spent in post-transmit backoff, resulting
in a uniformly distributed waiting time between

t1 = t0 + tAIFS + 0 + ttx(2400 bit) = 1006 µs, (8)

t2 = t0 + tAIFS + CWmintslot + ttx(2400 bit) = 1201 µs. (9)

When waiting for data of two applications, the delay is
characterized by the uniform sum distribution of both backoffs,
with bounds of

t3 = t1 + tAIFS + 0 + ttx(2400 bit) = 1564 µs, (10)

t4 = t2 + tAIFS + CWmintslot + ttx(2400 bit) = 1954 µs. (11)

When changing App 1 to unicast (baseline, Exp 2), frames
are delayed commensurate to the additional ACK frame that
needs to be sent (and processed) – not just for App 1, which
takes longer to send frames, but also for App 2 because of
head of line blocking. Still, because unicast frames are almost
immediately acknowledged, the head of line blocking effect
is of no further consequence in this scenario. We thus next
investigate a scenario where the intended receiver is not (or
no longer) in the network.

Figure 2 illustrates the effects observed in the discussed
alternative scenario (denoted as ghost, Exp 3 & 4) where
App 3 was changed to transmit data to a device that was no
longer there – thus reproducing the scenario of a neighbor
having existed previously before moving out of reception
range. It can readily be observed that, as predicted, the lost
ACKs of App 3 transmissions had a catastrophic effect on
the delay of App 1 and App 2 transmissions. In particular, no
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Figure 2. TX queuing delay in the ghost scenario.
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(b) simulation (using the Veins simulator)

Figure 3. Channel load in the baseline and ghost scenarios.

appreciable difference can be observed between the impact
on those applications that were generating broadcast frames
(Exp 3 and Exp 4 App 2) and those that were generating
unicast frames (Exp 4 App 1) – the reason being that both
share a transmit queue with the frames generated by App 3.
For both, lost acknowledgements cause head of line blocking,
increasing the time they spent in the transmit queue until the
head of line frame expires. Both broadcast and unicast frames
were queued for a typical duration of 150 ms and delays could
exceed 200 ms – well worse than the demands of many VANET
applications [27], [28].

A further consequence of this is revealed when examining
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Figure 5. Number of queued frames in the baseline and ghost scenarios.

channel load: In Figure 3 we see that, as expected, in the
baseline scenario the applications manage to saturate the
channel. Conversely, looking at the results for the ghost
scenario, in both computer simulation and actual measurements
lost acknowledgements cause the channel load to drop down
to values of around 15 % to 20 %.

The reason for this is evident from Figure 4, where we plot
the chosen backoff slots for each application and compare
these measurements to Monte Carlo simulations following
the analytical derivations. As predicted by the analytics, the
contention window in measurements increases according to the
exponential backoff algorithm when no acknowledgement is
received for App 3.

This is reflected in the queue utilization, shown in Figure 5.
As expected, in both computer simulations and actual mea-
surements queue fill levels in the baseline scenario stay near
zero, as traffic is non-bursty and the offered load is below
the capacity of the channel. However, queue levels increase
massively in the ghost scenario, caused by HOL blocking
of packets retransmitted due to lost acknowledgements. This
gives a good impression of the negative impact of failed unicast
transmissions on the networking performance and points to
potential dangers of this effect for bursty traffic.

All in all, our experiments illustrate the grave effect that

head of line blocking, provoked by unicast frames addressed
to a former neighbor, has on broadcast frames’ delay.

E. Towards a Solution

In the previous sections we show the negative impact of
failed unicast transmissions on networking performance. One
approach to avoid this is to lower the number of retransmissions
at the MAC for failed unicast packets. To maintain the same
level of reliability, retries then need to be taken care of by the
application layer. Here we present such an application-based
retransmission approach which avoids HOL blocking for failed
unicast transmissions, but still retransmits those packets.

For each transmitted unicast packet, we do the follow-
ing: If the transmission was successful (we received an
acknowledgement after a SIFS) we delete the packet from
the queue head. If the transmission was unsuccessful (we do
not receive an acknowledgement within tACK_wait) we keep
the contention window at CWmin and do not perform any
immediate retransmission. Instead, we reinsert the packet at
the tail of the queue (i.e., after all other queued packets for that
particular access category). If the retransmission count for that
particular packet exceeds the configured maximum number of
retransmissions, the packet is dropped.

We achieve this by setting the maximum number of retries
for failed unicast transmissions at the MAC layer to zero
but still waiting for an acknowledgement to be received.
Instead of going into exponential backoff when missing an
acknowledgement, we retransmit the packet at the application
layer. Intuitively this will lead to lower delays for the remaining
queued packets as no retransmissions on the MAC layer are
performed which would cause HOL blocking.

We evaluate this approach using the scenario denoted as
app. retry (Exp 5 & 6) in Table I. It is otherwise identical
to Exp 3 & 4: We again have three different applications
which generate messages in random order. App 3 sends frames
as unicast to a station that does no longer exist, thus no
acknowledgements will be received for those packets.

In Figure 6a we show the delay that packets spent in the
EDCA queue. Because head of line blocking is effectively cir-
cumvented by the presented approach, no appreciable difference
can be seen between the unicast and broadcast experiments.
Compared to the default approach (of keeping the frame at the
queue head until its retransmit count is exceeded) the delay of
all frames is now tremendously lowered to around 8.5 ms (down
from the approx. 150 ms shown in Figure 2). As a consequence,
the presented approach also brings the channel load (shown
in Figure 6b) to values comparable to those measured in the
baseline scenario with no lost acknowledgements (see Figure 3).
Similarly, as every failed transmission is still retried as often as
in the ghost scenario, the queue occupancy remains comparable,
as shown in Figure 6c. Yet, if lost acknowledgements are not
a consequence of an absent receiver and a retry is actually
warranted, additional delays are likely incurred by the frame
taking a round trip through the application layer. Another side
effect of this scheme is that packets get reordered, thus this
approach most probably negatively influences higher layer
transport protocols like TCP, requiring special attention [29].
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Figure 6. Simulation: application layer retransmissions (using the Veins
simulator). Note that all lines are overlapping.

Still, due to its simplicity, this approach can serve as a baseline
for comparisons and, we believe, a basis for future work.

F. The Special Case of Active Attacks

In this section we evaluate the impact of failed unicast
transmissions on the goodput of traffic flows by actively jam-
ming MAC acknowledgements. In the past, similar experiments
were performed [30] by using custom developed hardware
and it was found that different vendors for 802.11b wireless
cards experience different performance caused by non-standard
compliant backoff procedures. We instead focus on the impact
of lost acknowledgements on the backoff behavior of unicast
transmissions, and on the degree to which the channel load
and goodput are affected.

In the following experiments we build upon the work of
Vanhoef and Piessens [31] which present firmware extensions
for popular USB WiFi sticks based on the ath9k-htc driver to
accomplish low-layer attacks. The goal of the jammer is to stop
decoding a frame while it is on the air, and immediately start
sending a custom short frame – thus causing interference at a
receiver. With high probability this will lead to a wrong Frame
Check Sequence (FCS) of the original frame on the receiver,
which then cannot further process this frame. As we measure a
minimum delay of around 126 µs from the first Byte up to the

point where we are able to start sending our jamming frame,
this is far too long to reliably jam MAC acknowledgements of
112 bit size. We solved this issue by detecting the frame for
which we expect an acknowledgement to be sent, perform busy
waiting up to the point where we expect the acknowledgement,
and then send our short jamming frame. All these processes are
performed on the firmware of the USB WiFi dongle, configured
using a command sent to the firmware. This command includes
parameters to define the length and modulation and coding
scheme of the jam signal, which frames to detect, and the
offset between frame detection and sending the jam signal.

Our scenario consists of a sender and a receiver, each
equipped with a wireless card of type Compex WLM200N5-
23ESD using an Atheros AR9220 chipset with the ath9k driver
and running Linux 3.18. Building on the work of Lisovy et
al. [24] we configured them in OCB mode on channel 178
(5890 MHz). Due to a lack of 10 MHz channel bandwidth
support of our jamming system, we use 20 MHz channel
bandwidth for all nodes. Keeping NDBPS = 48 bit results in a
bit rate of 12 Mbit. Further, the MAC uses contention window
settings of CWmin = 15 and CWmax = 1023 slots, as well as
an AIFSN value of 6. RTS/CTS operation is disabled. The
short and long retry limits are configured to 7 and 4 retries,
respectively; however in the experiment we found that the
wireless card performs 20 retries – and that it does not invoke
exponential backoff – for the case that ACKs are received but
cannot be decoded, as we detail in Section III-F.

Further we use a dedicated node to continuously measure
the channel load. Finally, our jamming node is equipped with
a Netgear WNDA3200 USB WiFi dongle, configured similarly
to the sender and receiver.

On the application layer we use the iperf tool in UDP mode
to saturate the channel and measure goodput on the wireless
link between the receiver and the sender. The packet length
on iperf is set to lpayload = 800 Byte (6400 bit), which results
in a total number of 6912 bit to be transmitted over the air
including UDP header (64 bit), IP header (160 bit), LLC header
(64 bit), and IEEE 802.11 header (224 bit).

We investigate 3 scenarios: In the baseline scenario, no
jamming is performed and all acknowledgements are received.
In the jammed scenario, acknowledgements are selectively
jammed. In the std scenario, acknowledgements are selectively
jammed, but we assume the hardware to follow the standard
(7 retries, exponential backoff).

We first calculate the expected goodput of unicast packets
on a wireless link for the given packet size, both for successful
and failed transmissions.

We use the notation and derivations introduced in Sec-
tion III-A, substituting t′′ for t and T ′′ for T to indicate the use
of timing parameters for 20 MHz channel bandwidth. In more
detail, we use T ′′preamble = 16 µs, T ′′signal = 4 µs, T ′′sym = 4 µs,
t′′SIFS = 16 µs, t′′slot = 20 µs, and t′′rx_delay = 25 µs.

Based on these, the transmission time of a frame of 6912 bit
is calculated analogous to Equation (1) to be t′′tx(6912 bit) =
600 µs. Similarly, the time to transmit an acknowledgement
frame of 112 bit length is t′′tx(112 bit) = 32 µs.

The arbitration time for which the channel has to be idle to
start decrementing the backoff counter is derived analogous to
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Figure 8. Distribution of measured channel load ρ, compared with analytical predictions.

Equation (5) as t′′AIFS = 136 µs.
After the transmission of a frame ends, a node waits

t′′ACK_wait = 61 µs, calculated analogous to Equation (3), to
detect the PHY-RXSTART.indication which defines the point
in time when a signal starts being decoded. If this indication
is detected the node waits until its completion and checks
whether the received frame is a valid acknowledgement for the
data frame sent before. If no indication is detected, or if the
frame is not a valid acknowledgement to the data frame, the
exponential backoff procedure shall be invoked as outlined in
the standard [4, Section 9.3.2.8].

In the baseline scenario (no jamming), the average time for
channel access and transmitting a frame is calculated as

tbusy = t′′tx(6912 bit) + t′′tx(112 bit) = 632 µs

tidle = t′′AIFS +
1

2
CWmin t

′′
slot + t′′SIFS = 302 µs.

(12)

The average goodput is derived using the packet size without
lower layer headers as

µbaseline =
lpayload

tbusy + tidle
' 6.85 Mbit/s. (13)

The channel load is derived as

ρbaseline =
tbusy

tbusy + tidle
' 67.7 %. (14)

In the jammed scenario (that is, assuming the nonstandard
behavior of our hardware), the values change to

t̄busy = 21
(
t′′tx(6912 bit) + t′′tx(112 bit)

)
= 13 272 µs

t̄idle = 21
(
t′′AIFS + t′′SIFS +

1

2
t′′slotCWmin

)
= 6342 µs

µjammed ' 0.326 Mbit/s
ρjammed ' 67.7 %.

(15)

For the std scenario (that is, expected reaction to jamming),
we instead derive

t̂busy = 8
(
t′′tx(6912 bit) + t′′tx(112 bit)

)
= 5056 µs

t̂idle = 8(t′′AIFS + t′′SIFS) +
1

2
t′′CW(8) = 31 696 µs

µstd ' 0.174 Mbit/s
ρstd ' 13.76 %.

(16)

We now compare our analytical calculations to real world
experiments using iperf to send 800 Byte UDP packets on
the wireless channel. We perform the experiment both in a
baseline scenario without using a jammer and while jamming
acknowledgements. We track the number of chosen backoff
slots for each transmission by modifying the Linux kernel
running on the receiver. As all interframe spaces and signal
timings are known, the only unknown value is the time spent for
decreasing the backoff counter to zero, which can be calculated
by subtracting all known timings from the timespan between
receiving the current frame, and the previously frame. However,
we have to note that this only works when continuously
generating packets on the sender side, i.e., fully saturating
the wireless channel, as we do with iperf.

We measured the distribution of chosen backoff values by
the sender. As could be expected, in the baseline scenario
the backoff values are uniformly distributed over the range
of CWmin (though we observed a slight offset of almost one
slot, likely due to measurement inaccuracies). When jamming
the acknowledgement of each unicast frame we expected that
the exponential backoff scheme is invoked, thus increasing the
contention window. However, the chosen backoff values do not
increase, but are similar to the baseline scenario. This is due to
somewhat surprising behavior of the wireless card: We observed
that when it received incomplete (jammed) acknowledgements,
the sender performed 20 retries of each frame. Further, it never
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increased the contention window. The result of not doubling
the contention window in case no valid acknowledgement is
received is in line with the backoff behavior of different Atheros
chipsets [20]. Note that (as shown in Section III-B) when no
acknowledgement is received and the channel is idle during
the ACK duration, the Atheros AR9220 chipset behaves as
expected and performs exponential backoff.

The behavior of not performing exponential backoff between
retransmission of frames when the acknowledgement is jammed
can also be seen in the goodput metric. In Figure 7 we show the
measurements together with Monte Carlo simulations following
the derivations of Section III-F. The experiment matches
our calculations, for both the baseline scenario with around
6.85 Mbit/s and the jamming scenario without performing
exponential backoff with around 326 kbit/s. Moreover, we also
plot the expected goodput when performing exponential backoff
using 7 retries (denoted std) which goes towards 174 kbit/s.

Finally, we also measure the channel load for both scenarios.
In Figure 8 we see that our measurements again fit our analyt-
ical findings. The channel load does not change significantly
between the baseline scenario and the jamming scenario. This
confirms that the tested wireless card does not perform the
exponential backoff procedure for retransmissions required by
IEEE 802.11 when an acknowledgement cannot be decoded.

IV. LARGE AND DYNAMIC NETWORKS

In order to investigate the impact of the discussed effects in a
highly dynamic network, we conducted a computer simulation
of a large, realistic VANET. The setup consisted of a large
number of nodes running a typical protocol, which could be
toggled between using broadcast or unicast communication.
We now coupled the Veins simulation with the microscopic
road traffic simulator SUMO (version 0.25.0) to model realistic
road traffic.

As a common baseline and representing a prototypical
VANET scenario [1], we configured a freeway scenario with a
length of 7 km. In the interest of avoiding any border effects
we performed network simulation in the center 5 km of the
scenario. The 1 km border served to let the vehicles speed up
and use realistic mobility patterns. We configured three different
traffic densities on the freeway: 18 vehicles/km represented a
very low traffic density scenario (characterized by few available
neighbors and, thus, very challenging topology dynamics as
we will show); 55 vehicles/km represented off-peak traffic on
the freeway (low density, an in-between case); 169 vehicles/km
represented high density traffic on a busy freeway (characterized
by a very high number of neighbors and, thus, a challenge
in terms of channel load as we will show). Road traffic was
modeled by sampling from a distribution of five different
vehicle types (two types of trucks, and three types of cars)
modeling different kinds of drivers.

We collect results within a Region of Interest (ROI) of 3 km
in order to not be influenced by border effects. The simulation
warm-up period is configured to be 289 s to let the freeway
get filled with vehicles, and another 11 s are used for the
networking protocols to get into a steady state. Only after
these 300 s we start to collect results. For all results, we plot

the mean value together with the 95 % confidence interval
(please note that these intervals are sometimes very small). We
repeat each simulation setup at least 50 times with different
seeds for the pseudo random number generator in order to get
statistically significant results.

To show the impact of an application employing reliable
unicast communication in a VANET we use a simple neighbor
management process informing a Geocasting protocol which is
tasked with disseminating information among vehicles. Such
information might be as general as traffic reports or as specific
as knowledge about certain active road works. Without loss
of generality, we abstract a certain amount of information
into what we call information items, each of which is simply
represented as an opaque block of bits.

For the neighbor management process, each vehicle broad-
casts a beacon at a frequency of 1 Hz and maintains a 1-hop
neighbor table. Whenever vehicle v receives such a beacon
from another vehicle u it adds u to the neighbor table N. If two
successive beacons of a vehicle are lost (here, after 2 s) this
vehicle is removed from the neighbor table. This is performed
right before information from a neighbor table is used.

The Geocasting protocol builds on information in these
neighbor tables. Its main building blocks are: First, maintaining
a knowledge base consisting of arbitrary entries with geographic
constraints and their expiration time. Second, exchanging of
knowledge base digests among neighbors, as well as the
requesting and receiving of entries from these knowledge bases.
In more detail, the protocol works as follows:

Whenever a vehicle v discovers a new neighbor u, it makes
a probabilistic decision whether to inform this neighbor about
information stored in the knowledge base. With a probability
of p = 1/(new neighbors per s), node u will be informed of
the active events stored in the knowledge base of v. In this case
v sends a small digest including fingerprints of all available
events in the knowledge base, up to the maximum frame size.

When node u receives a digest, it responds with a data
request including fingerprints of interesting information, called
missing entries: An event is marked as missing if the distance
between u and the entry’s destination position is lower than
the distance between v and the entry’s destination position, or
if the vehicle is driving towards the destination direction. In
other words, a node only selects an entry as missing if it is
closer to its destination position than the node which offers
the entry, or the vehicle is driving towards the destination.

A node v which receives a data request from u constructs and
sends a data packet to u containing all information which was
marked as missing by u, again limited by the maximum frame
size. This data packet can be overheard by all other neighbors
using a monitor interface connected to the transceiver. When
this data is received by any node w the knowledge base gets
updated. Next, w iterates over all neighbors n in its neighbor
table N; then, for each neighbor it takes a probabilistic decision
with p = |N|−1 whether to send a digest to node n.

In our simulation, we generate new information items at a
rate of 4 Hz in the knowledge base of vehicles at each end of
the ROI. Further we present simulation results for information
item generation rates of 1 Hz and 10 Hz. The information items’
destination position is at the opposite end of the ROI, meaning
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Figure 9. Neighbor table performance for different traffic densities.

that each has to be disseminated through the whole network.
After a simulation has reached a steady state, we track each
information item as it traverses the network. We record the
delay each node measures from generation of this information
item until reception. The simulation was configured to collect
results for 5 s.

Neighbor beacons use a different EDCA queue for trans-
mission than the digest packets, data request packets, and data
packets in order to not influence each other in terms of head of
line blocking as outlined in Section III. In our simulations we
have chosen AC_BE with an AIFS value of 6 slots for neighbor
beacons, and AC_BK with an AIFS value of 9 slots for the rest.
The CWmin and CWmax values for both EDCA queues are
configured to be 15 and 1023 slots respectively. The number of
retries for reliable communication is set to 7 retransmissions.
The maximum frame size was configured to be 1024 Byte, an
information item in the knowledge base takes 64 Byte, and a
digest takes 8 Byte per entry.

A. Neighbor Management and Topology Dynamics

An important metric to evaluate the neighbor table mainte-
nance and topology dynamics is the set of 1-hop neighbors
known to each node – more specifically, the correctness
of this information. We compare the neighbor maintenance
process against an oracle. This oracle calculates the neighbor
information according to a unit disk model. For the distances
of nodes to be treated as 1-hop neighbors we use the 99 %
quantile of distances of successful frame transmissions. Thus,
we are able to calculate the fraction of missing and outdated
neighbors which represents the quality of the maintained
neighbor information. Finally, we evaluate the neighbor churn
rate, meaning how many 1-hop neighbors were deleted from
the neighbor table per second – due to lost beacons or because
the node was not in range anymore. This allows us to quantify
the stability of neighbor tables.

In our simulation we observe a mean value of around 12,
44 and 160 neighbors for each vehicle for the very low, low
and high density scenario respectively (Figure 9a). Of course,
the amount of neighbors is no indicator of how accurate this

information is. We therefore investigate the rate of outdated
(Figure 9b) and missing (Figure 9c) neighbors compared to
an oracle and measure around 4 % outdated and 5 % missing
information for the low density scenario. In the high density
scenario we measure around 4 % outdated and 11 % missing
information respectively. In the very low density scenario
the value stayed at around 4 % for the outdated neighbor
fraction and went slightly below 4 % for the missing neighbor
information. To investigate the reasons for these observations
in more detail, we turn to the mean churn rate of neighbors
(Figure 9d). We note that the value remains constant for all
three traffic densities, indicating that the neighbor management
process does not cause channel congestion.

Taken together, all results indicate that – even in this simple
freeway setting with no corners and no buildings – the network
topology dynamics are non-negligible.

B. Application Performance

We show results for the Geocasting application using
three different configurations for application layer messages
(neighbor beacons are always sent as broadcasts): (a) messages
sent using broadcast, meaning a node performs no retries and
immediately goes into post transmit backoff after transmission
of a frame (denoted as w/o ACKs); (b) messages sent using
reliable unicast as defined by the IEEE 802.11 HCF (denoted as
w/ ACKs); and (c) messages sent as broadcast frames, but using
our application-based retransmission algorithm outlined in Sec-
tion III-E (denoted as app. retry). Note that all configurations –
broadcast, unicast, and our application-based retransmission
algorithm – allow overhearing of information, thus a node can
overhear unicast packets not designated to it (alike to running
an additional interface in monitoring mode), handing their
information up to the application layer.

For the Geocasting application the premier metric to gauge
efficiency (and efficacy) of protocol performance and error
control is the fraction of informed nodes for a specific
information item. Besides that, also the delay for receiving
nodes to get this information plays an important role. Further
we report the number of frames queued in the EDCA queue
assigned for Geocasting traffic as well as the queuing time of
frames. Finally, we also evaluate the used channel capacity by
measuring the channel load.

In Figure 10a, we show the fraction of vehicles that received
a particular information item for three configurations: very
low, low and high road traffic densities by using a information
item generation frequency of 4 Hz. Not knowing about the
effects discussed in these manuscript, one might expect a
higher rate of informed nodes when using a communication
mode with ACKs than without, that is, when using the reliable
unicast communication mode of WLAN. The results, however,
indicate the exact opposite for the low density and high
density scenario: The fraction of informed vehicles drops to
approximately half in the low density scenario, to one twentieth
in the high density scenario. When substituting our very simple
app. retry approach (see Section III-E) success varies depending
on the node density: At low node densities, the approach
indeed performs better than one without retries. At high node
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Figure 10. Performance of the Geocasting app for three different traffic
densities and a message generation interval of 4 Hz.

densities, however, not retrying transmissions at all results in
vastly better application performance. However, when using
a very low traffic density scenario, retransmissions of both,
the reliable unicast communication mode of WLAN and our
simple app. retry approach will increase the number of informed
vehicles compared to a pure broadcast based communication
principle. The results are comparable when using a information
item generation rate of 10 Hz as shown in Figure 11a and 2 Hz
as shown in Figure 12a.

To investigate the reasons for these results, we take a closer
look at the queues. Figure 10b reveals head of line blocking as
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Figure 11. Performance of the Geocasting app for three different traffic
densities and a message generation interval of 10 Hz

the reason for the low application performance when using the
reliable unicast communication mode and a information item
generation rate of 4 Hz. Because of the topology dynamics,
the destination of a message is sometimes no longer there to
reply (see Section IV-A), so frames waiting for ACKs both
fill and block the queues. With increasing traffic density and
information item generation rate, the number of queued frames
also increase like seen in Figure 11b for a rate of 10 Hz and
Figure 12b for a rate of 2 Hz.

Figures 10c, 11c and 12c illustrate what this means for
message age for different information generation rates and
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Figure 12. Performance of the Geocasting app for three different traffic
densities and a message generation interval of 2 Hz.

traffic densities. As discussed in Section III, the effect of
blocked queues when using reliable unicast communication
is cumulative, yielding messages that queue for durations on
the order of seconds before they are finally sent. This further
exacerbates the effects of even moderate topology dynamics.
As our simple app. retry approach does not suffer from head
of line blocking, it works around this problem.

Yet, Figures 10d, 11d and 12d reveal for the low and high
density scenario that, while retries might be able to spread a
message further through the network, they increase the average
delay with which network participants receive new information

in the network. Only in the very low density scenario the delay
of broadcast based communication not using frame retries
is slightly higher due to the application protocol behavior:
when new neighbors are detected they will be informed about
information items available in a vehicles’ knowledge base as
outline in Section IV.

Figures 10e, 11e and 12e illustrate one of the reasons –
and the reason why the simple app. retry approach no longer
works in high density networks: All investigated forms of
retries increase the channel load. Indeed, in the case of high
density networks, the channel load increases to more than
the network can handle. Thus, while retries have a certain
value for improving the reliability of communications even in
networks of high topology dynamics, blindly retrying every
failed transmission multiple times leads to few potential gains
at the cost of massively increased channel load.

V. CONCLUSION

We studied the WLAN mechanism for reliable unicast
communication in networks of high topology dynamics. Taking
VANETs as a common example, we demonstrated that this
mechanism frequently causes head of line blocking because
of missing ACK frames. We investigated this effect using
analytical calculations, measurements on hardware, as well as
computer simulations.

We showed that head of line blocking can be disastrous
for applications with low latency requirements: a lost ACK
frame can block other frames for an average of 40 ms and a
single unicast application can block twice as many broadcast
applications on the same node for more than 200 ms. We
also showed that even moderate topology dynamics can cause
the higher layer protocol performance of a system to suffer
massively from head of line blocking. We demonstrated an
increase of channel load to the point of overloading the channel,
massive message loss, and increased delays on the order of
seconds – all due to the interplay of network topology dynamics
and the reliable unicast communication mechanism. We further
showed that head of line blocking is easy to trigger using
active or passive attacks – and that such attacks can be doubly
effective against commodity WLAN cards: Due to non-standard
behavior of such cards, the provoked drop in goodput of a
network under attack is not accompanied by the expected drop
in channel load.

As a way towards a solution, we also investigated a
simple approach that avoids triggering head of line blocking
by relegating the task of retrying failed transmissions from
the MAC layer to higher layers. We showed that even this
simple approach can reduce delays by an order of magnitude,
though the retries will still cause substantial channel load. We
conclude that wireless networks of high topology dynamics
can benefit from adapted retry mechanisms for reliable unicast
communication.
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