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Abstract—Recent works have shown that it would be beneficial for nodes
in wireless networks with very dynamic topology to maintain a list of 2-
hop neighbors, namely, the neighbors of its neighbors. This is important,
for example, for routing, clustering, and message dissemination to all the
nodes in a given geographic vicinity. In this paper, we propose a scheme
that uses Bloom filters for maintaining 2-hop neighborship information.
Furthermore, we developed a novel 2-hop broadcast algorithm making
use of the specific nature of our Bloom filter encoded neighbor information.
We particularly focus on the Vehicular Ad Hoc Networks (VANETs) appli-
cation scenario. Here, beaconing is a periodic broadcast of awareness
messages by each vehicle to its immediate neighbors. A naïve approach
would be to include all 2-hop neighbors in each beacon message, which,
however, would work only for small or sparse scenarios. We show that
our approach significantly reduces the length of the beacon messages,
thereby keeping channel load and collision probability considerably lower
than in the naïve scheme. We further demonstrate the application of
our Bloom filter based 2-hop neighbor table for developing higher layer
protocols and introduce a multi-hop broadcast protocol called Bloom
Hopping.

1 INTRODUCTION

In Vehicular Ad Hoc Networks (VANETs), beaconing is a
periodic dissemination of a control message by each vehicle
(node) to its immediate (1-hop) neighbors. Such messages
are needed for cooperative awareness and road traffic safety
applications and have been standardized as Cooperative
Awareness Messages (CAMs) [1]. Information included in a
single beacon message usually contains a node’s ID together
with its current status, e.g., position, speed, and heading.

Recent works have shown that it would be beneficial for
a node to maintain not only the list of its 1-hop neighbors,
but also of its 2-hop neighbors; namely, the neighbors of its
neighbors [2]. This is important, for example, in applications
where a message has to be forwarded to all the nodes
in a given geographic vicinity. Instead of using inefficient
flooding, the originating node can broadcast the message and
choose a subset of its 1-hop neighbors for forwarding. This
subset is chosen such that it contains a minimum number of
nodes to cover the 2-hop neighbors of the originator.
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Each node can maintain a list of its 2-hop neighbors
by including in its beacon messages the full list of all
its 1-hop neighbors. However, this naïve approach would
probably work only for small or sparse scenarios with very
few vehicles being involved. It lacks scalability because
the beacon size is directly proportional to the number of
neighbors. As an example, suppose that the regular 6 Byte
MAC addresses are used to uniquely distinguish nodes.
On a 6-lane freeway, with a communication distance of
500 m, the expected number of 1-hop neighbors is 150.
Thus, every beacon has to contain an expected amount
of 150 × 6 Byte = 900 Byte of neighbor information. The
immediate result is not only a substantial beacon overhead,
but – more importantly – reduced reliability of beacon
messages due to hidden terminal effects and an increased
beacon collision probability on the wireless channel.

In this paper, we propose a scheme that uses Bloom
filters [3] for disseminating and maintaining 2-hop neigh-
borship information. We show that, if used right, employing
Bloom filters significantly reduces the length of the beacon
messages, thereby keeping channel load and packet collision
probability considerably lower than in a naïve scheme that
incorporates full neighbor information into the beacons.
However, the efficiency of Bloom filters comes with the cost
of false positives.

We also address the following important decisions:
• What information should be included in each beacon.
• When to add or remove neighbors to/from the local

2-hop neighbor table.
• When to send neighbor information, and at which

frequency, i.e., the beacon rate.
• How to select a subset of 1-hop neighbors for forward-

ing, to cover (with high probability) the whole set of
2-hop neighbors.

In addition to allowing efficient broadcast by maintaining
the list of 2-hop neighbors, our scheme provides the basis
for a variety of other applications that build on top of neigh-
borship information: routing and clustering, for example.
Some of these applications require each node to have not
only 2-hop neighbor information, but N -hop information
for some N > 2. Moreover, the usage of Bloom filters for
neighbor tables provides a privacy preserving way due to
their inherent nature to not store addresses but hashes [4].

Without loss of generality, our approach can also be
adapted for N > 2 by using multiple Bloom filters indicating



different hop ranges, as well as for other types of networks,
particularly if the network topology changes rapidly.

To summarize, our contributions are as follows:
• We analytically explore the properties of Bloom filter

operations for probabilistic neighbor management (Sec-
tion 3).

• We introduce a Bloom filter based 2-hop neighbor
management scheme for dynamic wireless networks
(Section 4).

• We demonstrate the applicability of our system and
introduce a multi-hop broadcast protocol called Bloom
Hopping (Section 5).

• We study the performance of our Bloom filter based
neighbor management and the Bloom Hopping broad-
cast system (Section 6).

2 RELATED WORK

Neighborship information is the underlying basis for routing,
clustering, and message dissemination in mobile ad hoc
networks. Yet, for highly dynamic topologies, this still
constitutes a fundamental research problem, particularly
if 2-hop neighbor information are needed. This particularly
holds for highly dynamic wireless networks like VANETs,
where protocols need to maintain as accurate as possible 1-
hop [5]–[8] or 2-hop [9]–[12] neighbor information. Recently
Dressler et al. [13] proposed a novel context aware and class
based broadcast architecture for vehicular networks, which
takes advantage of 1-hop and 2-hop neighbor information to
support many different application domains for Intelligent
Transportation Systems (ITS).

A typical approach is to rely on hello or beacon mes-
sages, which are also used for cooperative awareness, i.e.,
letting vehicles become aware of each other. Technically,
we talk about small 1-hop broadcasts (e.g., CAMs) emitted
periodically by each vehicle at 1–10 Hz. It was found that
adaptive beaconing solutions are necessary in order to deal
with congestion control [6], [14]. For example, Adaptive
Traffic Beacon (ATB) [6] adapts the beacon interval according
to the available channel capacity; thus, sending beacons
as often as possible, but avoiding to overload the channel.
This concept has been adopted by ongoing standardization
activities: the ETSI ITS-G5 Decentralized Congestion Control
(DCC) protocol [15] adapts the beacon interval according
to a state machine resulting in different beaconing intervals
(relaxed, active, and restricted state). It periodically measures
the channel busy ratio bt using a sampling process and
performs transitions in the state machine accordingly. This
allows the protocol to react to overloaded channels.

More recent works focus on application demands and
safety metrics for selecting a fitting beacon interval [16], [17]
in order to efficiently use the radio resources.

Pulsar [18] uses 2-hop piggybacking of congestion control
information in order to maximize the overall beacon rate
of nodes – again for vehicular safety applications. 2-hop
information is also required by LIMERIC [19], [20] to adapt
the beacon rate in order to provide fairness to all nodes.

Recently, a first work using Bloom filters for calculating
connected dominating sets in vehicular networks has been
presented [21]. This approach extends the work in [22] by
using Bloom filter set-operations to lower the algorithm’s

complexity for finding a connected dominating set in an ad
hoc network. In essence the authors reduce the algorithmic
complexity of [22] fromO(n5) toO(n) by using two different
Bloom filter operations: union (w/o loss of information), and
intersection (w/ loss of information). Further the authors
propose a fixed size beacon structure to incorporate a list
of neighbors as well as a list of packet identifiers within a
single Bloom filter. The evaluation of the algorithm shows
that it is possible to reduce the beacon overhead compared
to the original solution, even though the amount of received
nodes and the retransmission overhead remains the same.
Although the authors of [21] focus more on lowering the
algorithmic complexity of the protocol, their approach is
using the intersection of Bloom filters which causes loss of
information, thus, increases the false positive error rate.

The use of Bloom filters has also been investigated for
multi-hop message dissemination in general networks [23],
[24] as well as in VANETs [2], [25]. A message dissemination
protocol using Bloom filters without explicit 2-hop neighbor
information has been proposed in [26]. In this approach,
for each message to be forwarded a Bloom filter has to be
included. A node rebroadcasts a message, if it can contribute
to reach additional neighbors, and appends his local neighbor
set in the Bloom filter which is included in that particular
rebroadcast. This scheme is based on contention based
forwarding, and thus limited in the usage within a general
network protocol stack since other applications running on
the same node may also rely on exact neighbor information.
That is in contrast to our approach, since we focus on (a)
efficient neighbor management algorithms to decide when
to add which neighbors into our neighbor table, such that
we can use that information to (b) efficiently choose fitting
nodes from that neighbor table to rebroadcast our message.
Our stack builds a basis for future applications to retrieve
neighbor information.

TO-GO [2] uses Bloom filter encoded 2-hop information
to allow probabilistic membership tests for selecting a set of
forwarding nodes for multi-hop geocast. Considering routing
and data discovery, different protocols have been proposed
using Bloom filters in wireless sensor networks [27]–[29], yet,
their performance is limited to rather stationary topologies.
Moreover, Bloom filter structures are also used in wireless
networks for routing in hierarchical topologies [30], or by
using aggregated forwarding information for geographical
routing [31].

Besides infrastructure-less vehicular networks (which
this paper focuses on), VANETs can also take advantage of
infrastructure like Roadside Units (RSUs) to obtain a better
network connectivity in sparsely connected scenarios. Silva
et al. [32] summarize in their survey more than ten years
of research in different disciplines of infrastructure-based
VANET communication, ranging from access technologies
to deployment strategies of infrastructure. Further, VANETs
can also benefit from cellular communication like LTE-V2V,
which also allows direct vehicle-to-vehicle communication as
IEEE 802.11p does. Bazzi et al. [33] analytically compare the
performance of IEEE 802.11p and LTE-V2V by taking into
account different modulation and coding schemes as well as
focusing on hidden terminals and the capture effect of IEEE
802.11p.

In this paper, we focus on vehicle-to-vehicle commu-
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Z = [0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0]

z = "AA:BB:CC:DD:EE:FF"

h0(z) h1(z) h2(z)

Fig. 1. Adding an element z (here, a MAC address) to an initially empty
Bloom filter Z (of size m = 12 bit and using k = 3 hash functions).

nication, going one step further and not only propose
Bloom filter based neighbor management but also study
the properties of Bloom filters and common mathematical
operations on them for 2-hop neighbor management. We
show that the efficient use of Bloom filters not only decreases
the overhead of transmissions, i.e., the beacon size and thus
channel utilization, but actively improves the application
layer performance. With the help of our proposed Bloom
Hopping algorithm, we show how to make use of the specific
nature of Bloom filter encoded 2-hop neighbor information
to achieve very efficient multi-hop data dissemination. Our
system also builds a fundamental basis for supporting a
wider range of communication protocols with relevant 2-hop
neighbor information.

3 PRELIMINARIES

3.1 Bloom Filter
A Bloom filter, first introduced in 1970 by Burton Howard
Bloom [3], is a space-efficient probabilistic data structure. It is
used to (probabilistically) test whether an element is member
of a set – with the possibility of false positives.

In detail, a Bloom filter Z consists of a bit array of m bits;
all initialized to 0. k different hash functions map an element
z to one of the m array positions in Bloom filter Z with
a uniform distribution. For adding an element z (written
as Z ← z), the corresponding positions in Z are set to 1
as shown in Fig. 1. To simplify the notation, we write the
insertion of all elements z in a set Z as Z ← Z.

To check whether an element is contained in the set, we
feed it to all k hash functions to get again the corresponding
k positions in the bit array Z . If any of the bits at these
positions is set to 0, the element is definitely not contained in
the set. If all bits on these k positions are set to 1, the element
is contained in the set, or, the bits were set when adding
other elements resulting in a false positive detection error.
False negatives are not possible in standard Bloom filters.

This type of filter does not allow the deletion of elements,
because a bit within the bit array could have been set to
1 after the insertion of the element which is to be deleted.
One approach could be to add a second Bloom filter, which
contains deleted elements. Whenever an element is contained
in the original Bloom filter and the one with deleted elements,
we can assume that the element was deleted.

By design this procedure may cause the problem of false
negatives since an element falsely queried in the Bloom
filter for deleted elements causes a wrong decision whether
an element is contained in the composite Bloom filter. An
alternative approach are Counting Bloom Filters [34], which,
however, can also suffer from false negatives [35].

In order to construct a Bloom filter, we have to know the
Bloom filter size m and the number of hash functions k to
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Fig. 2. False positive rate pfp vs. Bloom filter size m for increasing
numbers of inserted elements n.

use. We can derive a suitable size m (in bits) [24] from an
expected insertion count n and acceptable false positive error
rate pfp as

m = −n ln pfp

(ln 2)2
. (1)

In a vehicular scenario, this number n can be approx-
imated by using traffic density estimation protocols [36],
[37], or even by probabilistic data aggregation using Flajolet-
Martin sketches [38], such that a fitting Bloom filter size
can be determined. In [36], an overview of traffic density
estimation approaches focusing on infrastructure-free vehic-
ular networks has been presented. In this context, [37] was
identified as a promising approach, which allows estimating
the traffic density in a fully distributed manner even when
only a low penetration rate of 30 % is available.

The optimal number of hash functions k [39] to minimize
the false positive error rate for a given Bloom filter size and
inserted element count can be derived as

k ≈ m

n
ln 2 . (2)

For a given Bloom filter size m, number of inserted
elements n, and number of hash functions k, the false positive
error rate pfp for testing whether an element is member of
this Bloom filter can be calculated [23] as

pfp =
[
1−

(
1− 1

m

)kn]k
. (3)

In Fig. 2, we show the false positive rate as a function of
the Bloom filter size and the number of inserted elements.
For each Bloom filter size we calculated the optimal value of
k according to Eq. (2). We can clearly see the steep increase of
the false positive rate when the Bloom filter size gets small.

3.2 Operations on Bloom Filters

In order to compare Bloom filters, we need to introduce
common operations performed on Bloom filters, which we
use in the remaining part of this paper. Suppose we have
two Bloom filters A and B using the same number of bits
and the same hash functions. To generate a Bloom filter
that represents A ∪ B, we simply perform a ∨ (bitwise OR)
operation on A and B to get the union of those two Bloom
filters.

Similarly, the intersection of two Bloom filters A ∩ B is
performed using a ∧ (bitwise AND) operation on A and
B. Please note that this only approximates the intersecting
Bloom filter [39], which is sufficient for large filters [40].
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Finally, we show how to estimate the number of elements
|Z| that have been inserted into a Bloom filter Z . The
cardinality of a Bloom filter can be approximated as

|Z| ≈ |Z| = −m ln(1− c(Z)
m )

k
, (4)

where the function c(·) counts the number of bits set to 1
within the Bloom filter [41]. In the special case of all bits
set to 1 in a Bloom filter, the cardinality is not defined. For
illustration purposes, we plot this as infinity in the following.

4 NEIGHBOR TABLE MANAGEMENT

We start by describing the scheme that allows each vehicle
to build and maintain a Bloom filter database of its 2-hop
neighbors. To this end, each node x maintains a table with
the identities of its 1-hop neighbors (how to determine which
nodes are 1-hop neighbors is detailed in Section 4.1). Based
on this table, node x generates a Bloom filter of contained
identities and includes this Bloom filter in the beacons it
periodically broadcasts using interval I . Moreover in each
beacon we include the channel utilization bt =

tbusy

tbusy+tidle
as

the fraction of the time the wireless channel was sensed busy
since the last sent beacon, i.e., t−I and t. Further, each beacon
includes the current interval I of the sending node to indicate
at which time the receivers (most probably) can assume to
get the next beacon, as well as the GPS position of the node.
The neighbor table is then annotated with information about
each 1-hop neighbor y, including its last broadcast Bloom
filter, GPS position, distance, and time when the last beacon
was received, as well as the last value of bt.

The Bloom filters in the 1-hop neighbor table allow node x
to make probabilistic decisions about its 2-hop neighbor
set, by performing bitwise OR on all of the Bloom filter
vectors. In this paper, we focus on what we believe is the
most important application for acquiring 2-hop neighbor
information, choosing a good set of 1-hop neighbors for
forwarding, to cover all of the 2-hop neighbors. This “good”
set should be as small as possible, but contain neighbors with
which node x has a good wireless connectivity. The selection
process is discussed in detail in Section 5.

4.1 Maintaining 1-Hop Neighbor Tables

In general, a node x may consider any beacon it receives as
coming from a direct 1-hop neighbor for maintaining its list
of neighbors X and the corresponding Bloom filter X ← X.
This is the Bloom filter that will be sent periodically by node
x; the received Bloom filter of node y at node x is called Xy .

However, communication channels are sometimes asym-
metric, that is, even though node x receives a beacon from
node y, the same node y might not be able to receive
messages from node x. This means that node x must verify
that y receives its beacons before it can consider node y as
an acknowledged 1-hop neighbor. To address this problem,
when node x receives the beacon from y, it checks whether
its own identity is contained in the Bloom filter sent by y. If
yes, then there is a high probability (depending on the false
positive probability of the Bloom filter) that bidirectional
communication is possible; if not, then either node y has not
yet received a beacon of x or the communication channel

is asymmetric and the two nodes should not consider each
other as a neighbor.

Mathematically, we can create a subset of acknowledged
neighbors X′ of neighbors X of node x as

X′ =
{
u ∈ X : x ∈ Xu

}
. (5)

This results in an accurate Bloom filter based neighbor
table that only covers nodes that are able to communicate
bidirectionally. For simplicity, in the following, we call only
these neighbors 1-hop neighbors.

4.2 Maintaining 2-Hop Neighbor Tables

Our rationale to use 2-hop neighbor tables for VANETs is
as follows: First, 1-hop information in a network does not
give viable information about the topology of the underlying
network. This can be improved by including, for example,
the number of neighbors a node sees in the periodically
exchanged beacons to infer about the network connectivity
of the neighboring node. However, a receiver cannot derive
to what degree the neighbor set of one of its neighbors
differs from its own neighbor set. Having 2-hop neighboring
information at hand, we can calculate the difference of
the neighbor set and, thus, gain further information about
whether this node could be a promising rebroadcast node.

4.2.1 Algorithm

We now extend the concept of our neighbor management
approach to 2-hop neighbor tables. In our approach, each
beacon contains a Bloom filter of a node’s 1-hop neighbors.
Thus, we can build a per node 2-hop neighbor table con-
sisting of the respective Bloom filters. These Bloom filters
consist of all 2-hop nodes that we know from our 1-hop
neighbors. Because of interference, a node may not be aware
of some 1-hop neighbors. Moreover, neighbor tables might
be rather unstable, i.e., fluctuating entries because of lost
beacon messages. This may lead to wrong neighbor tables:
too many entries in the 2-hop neighbor table, and missing
entries in the 1-hop neighbor table.

To address the problem of wrongly assigning nodes as
1-hop or 2-hop neighbors, we can take advantage of a node’s
position and other nodes’ Bloom filters as well as their
announced beacon time. Whenever we are going to remove
a neighbor from the 1-hop neighbor table, we check whether
its ID is included in the Bloom filter of other nodes, which
are more distant to the node that we are about to remove and
which have sent a beacon after the announced beacon time of
the node we want to remove. Assuming node x is checking
its neighbor table for stale entries and wants to remove node
y from the neighbor table, we can decide whether to keep
the neighbor y (but mark it as hidden) in three steps:

1) A node x considers which of its neighbors are already
marked as hidden and which are not, storing them as

¯̄X =
{
u ∈ X′ : u is hidden

}
, (6)

X̄ =
{
u ∈ X′ : u is not hidden

}
= X′ \ ¯̄X . (7)
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2) Node x calculates a set of closer neighbors Cx,y ⊆ X̄, the
set of all visible 1-hop neighbors of x which are equally
or further away from node y than node x as

Cx,y =
{
u ∈ X̄ : distance(u, y) ≥ distance(x, y)

}
,
(8)

as well as a set of neighbors Dx,y ⊆ Cx,y from which a
beacon has been received after the announced beacon
time of node y

Dx,y =
{
u ∈ Cx,y : tb.-received(u) ≥ tb.-announced(y)

}
(9)

and a set of neighbors Ex,y ⊆ Dx,y that have a lower or
equal channel busy ratio bt compared to node x

Ex,y =
{
u ∈ Dx,y : bt(u) ≤ bt(x)

}
. (10)

This is essential to select only those neighbors Ex,y that
have a reasonably high probability to include node y
and do not suffer from a high amount of non-relevant
2-hop neighbors, which would increase the Bloom filter
false positive rate.

3) Node x only deletes node y from its neighbor table if y
is not in any of the resulting neighbors’ Bloom filters,
that is, if Fx,y =

{
u ∈ Ex,y : y ∈ Xu

}
and Fx,y = ∅.

Otherwise, it merely marks y as hidden. Please note
that when broadcasting beacons, we omit such hidden
neighbors from the Bloom filter.

We now can summarize all 2-hop neighbors in the Bloom
filter X ′′ as

X ′′ =
⋃

u∈X′

Xu . (11)

The main advantage of our solution is that it keeps
the neighbor tables itself intact, avoiding the problems of
wrongly annotating neighbors as 1-hop or 2-hop neighbors.
Furthermore, we can compensate short lasting outages of
beacons and do not need to remove this node from our
neighbor table.

4.2.2 Time Complexity
The time-complexity of the proposed scheme for maintaining
2-hop neighbor tables basically depends on Bloom filter
membership tests (Eq. (5)) and calculations of subsets of
1-hop neighbors (Eqs. (7) to (10)). The time-complexity of a
Bloom filter membership test does not depend on the number
of already inserted elements but only on the number of used
hash functions k, which can be derived by Eq. (2). Usually
k is small, e.g., k = 37 for a Bloom filter size m = 300 Byte
and an element count n = 45. Therefore, to test whether
a given element is with high probability part of the Bloom
filter, the time-complexity is O(k) since k hash values need
to be calculated. The same time-complexity also holds for
inserting an element to the Bloom filter.

To decide whether a node should be deleted or just
marked as hidden, the following time-complexities hold:
The subset calculation of hidden nodes in Eq. (7), of closer
neighbors in Eq. (8), and of nodes from whom a beacon was
received after the announced beacon time in Eq. (9) fall each
into O(n), where n denotes the number of 1-hop neighbors.
This process can be optimized at runtime by performing
all necessary calculations within one traversal of the 1-hop
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Fig. 3. Estimating the number of inserted elements in a Bloom filter. The
line width depicts the Bloom filter size; the dashed line shows the ideal
behavior.

neighbor table. Moreover, for each node remaining in Ex,y ,
we perform a membership test in the corresponding Bloom
filter, where the traversal through the set can be stopped
whenever a membership test was successful. Only in the
worst case (when a node is being marked as hidden), the
whole traversal through the list has to be performed.

The overall process needs to be repeated for all 1-hop
neighbors leading to a time-complexity of O(k × n2) for n
1-hop neighbors and k hash functions. For a typical scenario
of n = 45 1-hop neighbors, a Bloom filter size of 300 Byte,
and a number of k = 37 hash functions, we obtain 74 925
calculations of hash functions to be performed whenever
we update the neighbor table, which is necessary whenever
we send a beacon. For an Intel Atom® N450, which offers
1.6 MHash/s [42] employing the SHA256 hash function, this
would lead up to 749 250 calculations per second and, thus,
to a very high CPU utilization when using 10 Hz beaconing.
However, as we show in Section 6.3, a beaconing rate of
10 Hz would overload anyhow the wireless channel, thus,
using lower beaconing frequencies in the range of up to
1 s will also decrease the computation overhead. Moreover,
Bloom filters can also take advantage of different and more
inexpensive hash functions than SHA256, again lowering
the computational effort. A typical optimization for Bloom
filters [43] exploits the fact that k different hash functions
can be replaced by just two hash functions as follows:
gi(x) = h1(x)+i×h2(x), where the index i denotes the hash
function within k and gi(x) is the resulting hash function
used by the Bloom filter. This way, the time-complexity of
our algorithm degrades to O(n2). This set of computations
can even be parallelized since there are no dependencies
among traversals through the neighbor table.

4.3 Cardinality Estimation of Bloom Filters
We conducted several Monte-Carlo simulations to show the
performance of cardinality estimation, i.e., to approximate
the number of elements in a Bloom filter and the false positive
rate (cf. Section 3.2). Our simulation setup consists of two
Bloom filters A and B having the same bit length and using
the same set of hash functions. We randomly fill both Bloom
filters and made sure that 1⁄3 of the entries is added to both
filters, i.e., both Bloom filters overlap to 50 %. We performed
simulations for different Bloom filter sizes and repeated each
experiment at least 100 times with different seeds to obtain
statistically significant results.

In Fig. 3, we show how good the cardinality of a Bloom
filter |B| can be approximated compared to the true amount
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of elements |B| inserted in this particular Bloom filter. The
approximation closely matches the ideal behavior until to
the point where the Bloom filter is filled, i.e., almost all bits
are set to 1. This provides us an upper bound of elements to
be inserted in a Bloom filter of a given size.

In a second experiment, we investigated the applicability
of calculating A ∩ B. Results show that the fraction of
false positives when building a Bloom filter from scratch
containing exactly the intersecting elements is much lower
than the Bloom filter gained from the intersection (data not
shown due to length constraints).

The overall objective, however, is to assess the number
of 2-hop neighbors that are not direct 1-hop neighbors. The
quality of a specific Bloom filter to estimate diff(A,B), the
number of entries in a foreign filter B that are not part of a
local filter A, can formally be expressed as

|A ∪ B| − |A| ?
= oracle ?

= |B| − |A ∩ B| . (12)

Figure 4 shows the results normalized to the ground
truth. The estimation using the union of the Bloom filters
follows the ideal line until one of the two Bloom filters is
completely filled, except for a slight overestimation when
the Bloom filter is getting close to saturation. In contrast, the
approach using the intersection significantly underestimates
the number of new elements. We thus conclude that the use
of

diff(A,B) = |A ∪ B| − |A| (13)

to estimate the amount of additional neighbors is the most
appropriate option.

5 BLOOM FILTER BASED MULTI-HOP BROADCAST

2-hop (N -hop) neighbor tables have a broad range of appli-
cations for improving the management of dynamic networks.
In this section, we show how the specific Bloom filter based
neighbor management protocol can be extended to also
support efficient broadcast-based data dissemination, e.g.,
for warning messages or as the basis for general VANETs.

Our proposed multi-hop dissemination algorithm Bloom
Hopping works as follows. We start with the idea proposed
in [2], where every node x that receives or generates
a packet to be broadcast nominates a forwarding set of
nodes which then use a scheme similar to Contention-based
Forwarding (CBF) [44]. However, instead of contending for a
rebroadcast, our scheme x chooses as many 1-hop forwarders
as necessary to reach all (or a sufficiently large subset of) its

2-hop neighbors. To this end, node x uses the Bloom filters
maintained by the beacon protocol for neighbor management.
Specifically, node x has to choose a set of re-broadcasters
Rx as the minimum subset of visible 1-hop neighbors X′ to
cover all of its 2-hop neighbors.

The minimum set cover problem is NP-hard [45]. Thus,
we decided to have node x using the set Rx by a greedy
iterative process that selects a node u that has most new
(uncovered) neighbors and has not yet been selected as a
rebroadcast node. Formally, node x starts with an empty set
of re-broadcasters Rx and a Bloom filter of already-covered
2-hop neighbors X̂ ′′, which is initialized to the symmetric
1-hop neighbors, i.e., X̂ ′′ ← X′. It repeatedly chooses the
best node u as

u = arg max
u∈X′

(
diff(X̂ ′′,Xu)

)
(14)

and adds the chosen 1-hop neighbor u to Rx and its Bloom
filter Xu to X̂ ′′, that is X̂ ′′ ← (X̂ ′′ ∪ Xu). The process ends
when all 2-hop neighbors (or a sufficiently large subset) are
covered, as can be derived by comparing X̂ ′′ and X ′′.

The set Rx now contains all 1-hop neighbors selected to
rebroadcast the message. Since Rx is usually small (e.g.,
it is close to 2 in freeway scenarios), it is added to the
broadcast message. In addition, to prevent collisions between
rebroadcasting 1-hop neighbors, node x adds to the message
the value of an artificial delay for each such neighbor. This
delay could be made dependent on the actual link quality
reported by that particular neighbor in the periodic beacons,
or it could be derived by a more sophisticated approach like
the following: For each pair of neighbors u, v which have
in their Bloom filters no other neighbors in common but
the node x, we select a zero rebroadcast delay. This has the
advantage that the message gets forwarded very quickly
without risking packet collisions at receiving nodes since the
rebroadcast regions do not overlap on the neighbors. For all
other rebroadcast nodes, a slightly different delay is chosen
for rebroadcasting, to avoid possibilities of packet collisions.

In dense networks, e.g., in urban scenarios, node x can
make the packet dissemination process more robust by
adding more 1-hop neighbors to Rx. If the cardinality of
Rx is too large to include all chosen 1-hop neighbors, the
addresses of these nodes can be replaced by a Bloom filter
Rx ← Rx.

6 PERFORMANCE IN VANETS

6.1 Realistic Road Traffic and Network Simulation
Setup
For all simulations, we used the vehicular networking
simulation toolkit Veins [46], which couples the SUMO road
traffic simulator with the network simulator OMNeT++. We
used synthetic but very realistic road traffic modeled by
SUMO in favor of road traffic traces since it allows us to
easily control the scenario in terms of traffic density.

We first configured a six-lane freeway of which the
network simulator used 5 km. We collected protocol per-
formance metrics in a Region of Interest (ROI) of 3 km to
avoid border effects. Road traffic was modeled as a mixture
of 90 % cars and 10 % trucks by sampling from a distribution
of five different vehicle types (two types of trucks and three
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TABLE 1
Vehicular network simulation parameters

ETSI ITS-G5 TRC

Minimum beacon interval Imin = 40ms
Default beacon interval Idef = 500ms
Maximum beacon interval Imax = 1 s
bmin 0.15
bmax 0.40

ATB

Minimum beacon interval Imin = 100ms
Maximum beacon interval Imax = 1 s
Interval weight wI 0.75

Beacon message

Packet size 200 Byte + Bloom filter
Bloom filter size from 12 Byte to 350 Byte
MAC priority AC_BE

CWmin = 15, CWmax = 1023
AIFSN = 6

Multi-hop message

Packet size 300 Byte
MAC priority AC_VO

CWmin = 3, CWmax = 7
AIFSN = 2

IEEE 802.11p PHY

NIC bitrate 6 Mbit/s
NIC TX power 20 mW
Path loss model freespace (α = 2.0)
building obstacle shadowing β = 9 dB, γ = 0.4 dB/m

types of cars modeling a variety of driving styles). We used
two different road traffic densities of ∼43 and ∼148 veh/km
to model low and high density traffic. Second, we conducted
our simulations in a scenario similar to a Manhattan grid
with a road traffic density of ∼400 veh/km2 and four types
of cars modeling a variety of driving styles and a ROI of
2.1 km2 as well as buildings within the scenario. We used a
warm-up period to fill the roads with vehicles and reach a
steady state of neighbor table protocol operations, as well as
to pre-populate 1-hop and 2-hop neighbor tables.

For beaconing, we selected three approaches as a baseline
to compare the performance of our Bloom filter based ap-
proach. In particular, we used simple fixed period beaconing
(at 1 Hz and 10 Hz), originally defined for sending CAM
messages, Transmit Rate Control (TRC) [15] of the ETSI ITS-
G5 DCC standard.

For evaluating the performance of our Bloom Hopping
protocol, every 100 ms we randomly select 10 vehicles uni-
formly distributed within the ROI to disseminate messages.
We performed simulations for different Bloom filter sizes
and show a subset of the most interesting results. For all
simulation experiments, we performed at least 5 runs with
different random seeds for simulating road and network
traffic to obtain statistically significant results – some of the
experiments indeed took close to half a day but calculated
confidence intervals clearly show that the collected measure-
ments are statistically sound. The most important simulation
parameters are summarized in Table 1.
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Fig. 5. Beaconing performance for the high density freeway scenario
(average value and 95 % confidence interval).

6.2 Performance Evaluation Using an Oracle

We investigated the following metrics to observe the protocol
performance.

First, we focus on the beacon interval as well as the chan-
nel utilization to assess the impact of the additional neighbor
information piggybacked in the beacons. Furthermore, we
measure the fraction of nodes that we did not purge from
the neighbor table as phidden = |¯̄X|

|X′| which can be used as
an additional metric to measure channel quality. We also
measure the fraction of not acknowledged neighbors of a
node as pnot_ackd = 1 − |X

′|
|X| to measure how symmetric the

communication channel is. Following up to results published
in [47], we evaluate the neighbor churn rate, which shows
the fraction of deleted 1-hop neighbors per second due
to lost beacons or because a neighbor moved outside the
communication range. The churn rate helps to understand
the dynamics of the network and, thus, the fluctuations in
neighborship information.

Second, in order to assess the quality of the neighbor
tables, i.e., the up-to-dateness of 1-hop and 2-hop entries, we
compare the results to an oracle. Instead of using a simplistic
oracle based on a unit disk model, we developed a more
sophisticated method by taking advantage of an idealistic
MAC and PHY ignoring packet collisions and delays caused
by CSMA/CA and EDCA queues. A collision is defined
to be a packet that could have been correctly decoded if
there would not have been any interference. We use a 10 Hz
beaconing scheme to populate our oracle with neighbors
and create a database for each simulation run containing
the 1-hop neighbors O′, and 2-hop neighbors O′′ for each
vehicle over time. In our simulation setup each vehicle has on
average 44 one-hop and 41 two-hop neighbors (freeway low
density); 169 one-hop and 159 two-hop neighbors (freeway
high density); and 54 one-hop and 131 two-hop neighbors
(Manhattan).

The fraction of missing 1-hop neighbors of a node x

compared to the oracle is calculated as p′missing = |O′\X′|
|O′| .

The fraction of outdated 1-hop neighbors of a node x is the
relative amount of unnecessary neighbors compared to the
oracle as p′outdated = |X′\O′|

|X′| . Similar metrics were recorded
for 2-hop neighbors as p′′missing and p′′outdated. These metrics
are collected every 100 ms after the warm-up period.

Finally, for multi-hop message dissemination, both the
fraction of informed nodes and the channel utilization were
recorded. For all results, we plot the average value together
with the 95 % confidence interval.
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Fig. 6. Neighbor churn rate for different scenarios and traffic densities
(average value and 95 % confidence interval).

6.3 Impact on Beaconing
In a first experiment, we investigate the impact of the Bloom
filter approach on the beaconing performance using a fixed
size Bloom filter of 240 Byte. In Fig. 5a, we plot the channel
utilization for the high density freeway scenario. Both TRC
and ATB are rather sensitive to the channel utilization and
configure the beacon interval (data not shown due to space
constraints) to higher values in the high density scenario,
even though ATB is increasing the interval less prohibitive
(resulting in lower delays). These results are in line with
recent studies on beacon protocols and helped validate both
the setup and the beacon protocol implementation [6], [8]. We
can clearly see that 10 Hz beaconing strongly overloads the
wireless channel in the high traffic density scenario. For the
Manhattan scenario we observe qualitative similar results,
but in general with lower beacon intervals and channel
utilization due to obstacle shadowing (data not shown). In
particular ATB choses a slightly larger beacon interval than
TRC to cope with the network dynamic caused by obstacle
shadowing and hidden terminals.

We expect neighbor information being less up-to-date for
high vehicle density; particularly for TRC and even more
critical for 10 Hz beaconing. Thus, we assess the metrics
phidden and pnot_ackd, which focus on measuring the channel
conditions in Figs. 5b and 5c, again using a Bloom filter size
of 240 Byte and the high density freeway scenario. As can
be seen, the performance of 10 Hz beaconing in the high
density scenario is poor compared to all other beaconing
protocols. The cause is the highly overloaded channel leading
to unstable neighbor tables. Also TRC performs worse
compared to ATB and 1 Hz beaconing; this is because for TRC
the protocol state machine has rather large steps between
the available beacon intervals. This means that a neighbor
might be dropped due to a quick change in the beacon
configuration. ATB does not suffer from this problem, thus,
phidden and pnot_ackd stay at a lower value. This of course
also holds for 1 Hz beaconing. Overall, these metrics are
rather sensitive to the channel load. With lower channel
load, the TRC results are much better (e.g., for the low
density scenario), still TRC suffers from a higher number of
hidden neighbors due to the operation of the protocol state
machine. For the Manhattan scenario the results show similar
effects: both TRC and 10 Hz beaconing suffer from a higher
value of phidden compared to ATB and 1 Hz beaconing. ATB
keeps low values as it carefully adjusts the beacon interval
according to the channel state. In general, pnot_ackd is even
more sensitive to channel congestion as well as to oscillating
beacon frequencies.

To assess the number of deleted neighbors per second,
we show the results for the low and the high density freeway

scenario as well as the Manhattan scenario in Fig. 6 using
1 Hz beaconing and a fixed size Bloom filter of 240 Byte. In
essence, we observe around 3 % and 3.3 % deleted neighbors
per second for the low and high density freeway scenario,
respectively. For the Manhattan scenario, we observe around
1.5 % deleted neighbors per second, which is caused by the
slower driving speed of the vehicles compared to the Freeway
scenario.

6.4 Bloom Filter based Neighbor Table Management

We now concentrate on the performance of the Bloom
filter based approach for neighbor management. We start
investigating the capabilities of the beacon protocols to
maintain the neighbor tables. In particular, we show the
results of outdated and missing entries compared against
an oracle. In addition, we compare our results with a naïve
baseline neighbor management protocol that exchanges 2-
hop neighbor information using a list of identifiers without
the usage of Bloom filters. The beacon size of this baseline
approach grows linear with the amount of neighbors; we call
this method naïve. For the Bloom filter, we show results for
two different filter sizes, one being too small, thus, suffering
from false positives as well as a fitting (for the particular
scenario) Bloom filter.

In Fig. 7, we show the results for the high density freeway
and the Manhattan scenario. Intuitively, we expect larger
and more accurate neighbor tables the more frequently we
exchange information, i.e., the smaller the beacon interval
gets. As can be seen in the results, this hypothesis cannot
be confirmed. In high density scenario, the load on the
channel is so high that no continuous update is possible
due to collisions. Our observation is in line with findings on
beaconing approaches published elsewhere, e.g., in [8].

The overall outdated and missing fraction is a good
indicator of how well the protocols are able to maintain
the neighbor tables compared to the oracle. If the Bloom
filters are too small, the outdated ratio increases due to false
positives. This is not only valid for 2-hop neighbors, but
also influences the fraction of outdated 1-hop neighbors
(cf. Eq. (10)). On the other hand, a too big Bloom filter
directly increases the channel load (and, thus, the collision
probability). Thus, a compromise has to be found between
the Bloom filter size and the false positive rate.

The fraction of outdated 1-hop neighbors is quite low for
all protocols (cf. Figs. 7a and 7c). This comes from the fact
that entries are removed from the list when there was no
beacon received up until the next announced interval and no
further away node with lower or equal channel utilization
includes this node in the Bloom filter. In particular, when a
too small Bloom filter is used, false positives causes a node
to not delete 1-hop neighbors leading to a higher amount of
outdated neighbors. We observed similar results in the low
density freeway scenario (data not shown).

The fraction of missing entries, however, is higher for
high vehicle density and particularly for the naïve approach.
We also see that in the high density freeway scenario the
60 Byte Bloom filter experiences a lower missing 1-hop ratio
compared to the 180 Byte version due to a smaller beacon
size. This is due to packet collisions, thus, missing updates.
Having a closer look at 1 Hz beaconing in the high density
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(a) Freeway: Fraction of missing and outdated 1-hop
neighbors.
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(b) Freeway: Fraction of missing and outdated 2-hop
neighbors.
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(c) Manhattan: Fraction of missing and outdated 1-hop
neighbors.
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(d) Manhattan: Fraction of missing and outdated 2-hop
neighbors.

Fig. 7. Neighbor ratios (1-hop and 2-hop) for the high density freeway and Manhattan scenario: Naïve solution compared to our approach using
Bloom filters with different sizes (average value and 95 % confidence interval).

freeway scenario, the number of missing 1-hop neighbors is
lowered by 54 % when using a Bloom filter size of 180 Byte
compared to the naïve approach. In the Manhattan scenario,
the results for 1 Hz beaconing change to a decrease of 18 %
for the missing 1-hop neighbors for a Bloom filter size of
72 Byte.

The results for 2-hop neighbor information behave simi-
larly (cf. Figs. 7b and 7d), but the outdated neighbors ratio
is higher since dissemination time accumulates over 2 hops.
Moreover, a too small Bloom filter size increases the amount
of outdated information due to false positives when querying
the Bloom filters. The impact of the channel load becomes
even more visible: the naïve approach for 10 Hz beaconing
completely fails due to the congested channel. When the
communication channel is completely overloaded (naïve
10 Hz beaconing), even our approach to mitigate the wrong
assignment of 1-hop neighbors as 2-hop neighbors fails. Here
the high value of p′′outdated is caused by 1-hop neighbors
reporting nodes as 2-hop neighbors which we normally could
reach within 1-hop when no permanent channel congestion
occurs. For 1 Hz beaconing, we observe a decrease of 53 % of
missing and a decrease of 47 % of outdated 2-hop neighbors
when using a Bloom filter size of 180 Byte compared to
the naïve approach. In the Manhattan scenario, the results
for 1 Hz beaconing change to a decrease of 40 % for the
missing 2-hop neighbors when using a Bloom filter size of
72 Byte, while the fraction of outdated neighbors (due to
false positives) slightly increases by 14 % compared to the
naïve approach.

In all scenarios, we clearly see the potential of using
Bloom filters: with a fitting Bloom filter size of 60 Byte
(low density freeway), 180 Byte (high density freeway),
72 Byte (Manhattan), the amount of missing and outdated
information is very small for ATB, TRC, and 1 Hz beaconing.

6.5 Bloom Hopping Performance

To measure the performance of message dissemination
using Bloom Hopping, we record the fraction of 2-hop
nodes that receive the message and monitor the observed
wireless channel utilization. We performed a parameter
study for different Bloom filter sizes m and plot the results
for all underlying beacon protocols providing the needed
neighborship information. Further we compare our Bloom
Hopping protocol against the naïve approach in which we
compute our forwarding set similar to Section 5 without
using Bloom filters.

In Figs. 8 and 9, we show the results for the high density
freeway and the Manhattan grid scenario, respectively.
We can see that Bloom Hopping works best using 1 Hz
beaconing, reaching about 80 % of all 2-hop nodes in all
scenarios (cf. Figs. 8a and 9a). The missing 20 % come from
the fact that increasing load on the wireless channel (cf.
Figs. 8b and 9b) lowers the communication distance due
to interference. These nodes have no chance receiving the
message in reality. Similar results can be observed in the low
density freeway scenario.

For the high density freeway scenario, we can further
see that when using Bloom Hopping and 1 Hz beaconing,
we reach around 12 % more 2-hop neighbors (cf. Fig. 8c)
compared to the naïve approach. At the same time, we save
around 43 % channel load (cf. Fig. 8d) compared to the naïve
approach, again using 1 Hz beaconing. The results for the
Manhattan scenario are comparable (cf. Figs. 9c and 9d).

When using TRC or ATB, we notice a slight performance
degradation in the high density freeway scenario. This is
due to the increasing channel load, which leads to outdated
or inaccurate neighbor information (cf. Section 6.4). Worst
results have been collected for 10 Hz beaconing, which
simply overloads the wireless channel in all scenarios. As can
be seen in Figs. 8a and 9a, the Bloom filter size has a great
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symmetric nodes.

Fig. 8. Fraction of informed 2-hop neighbors and channel utilization for
the high density freeway scenario using different Bloom filter sizes.

impact on the fraction of received nodes, as well as on the
channel utilization. At the beginning, the amount of received
neighbors increases with increasing size of Bloom filter,
thus decreasing false positives. After reaching a maximum
at around 240 Byte (high density freeway) and 120 Byte
(Manhattan) the performance degrades due to increased
channel load if the size of Bloom filters increase.

When we modify the Bloom Hopping algorithm outlined
in Eq. (14) to include also non-symmetric nodes X instead of
only symmetric nodes X′ as calculated in Eq. (5), we observe
very similar results for the fraction of informed vehicles and
the channel load as shown in Figs. 8e and 8f for the freeway
scenario. A non-symmetric link occurs when node x can
receive messages from node y but not vice versa, e.g., due
to interference. Intuitively, we would expect a much lower
rate of informed vehicles when nodes with a asynchronous
wireless link would be selected to retransmit a particular
message but cannot receive the message due to interference.
However, in our case the Bloom Hopping algorithm solves
this issue as only those neighbors get selected to rebroadcast
messages that gain additional uncovered 2-hop neighbors.
As a node that suffers from high interference and thus
observes a lower amount of decodable messages, it has
a limited overview of neighboring nodes and, therefore,
announces only a lower amount of direct 1-hop neighbors
within its Bloom Filter. Therefore, a node which announces a
higher amount of neighbors can gain more to cover all 2-hop
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Fig. 9. Fraction of informed 2-hop neighbors and channel utilization for
the Manhattan scenario using different Bloom filter sizes.

neighbors and, thus, gets chosen in favor to a node only
having a very small number of neighbors. Only in very rare
cases, nodes with a non-symmetric wireless link can gain a
very small contribution to reach further nodes, which can be
observed in the Manhattan scenario shown in Figs. 9e and 9f.

Qualitatively comparing our results to other Bloom filter
based message dissemination approaches like [21], we clearly
see the following advantage of our system: The lowered
channel utilization gained by transmitting a much smaller
Bloom filter instead of a large list of neighbors leads to
an increased number of informed vehicles for the Bloom
Hopping message dissemination protocol as can be seen in
Figs. 8 and 9. This is in contrast to existing work (e.g., [21]),
where only the overhead of beacon transmissions (i.e., the
channel utilization) is lowered, but no better performance of
the application is achieved. Further, as outlined in Section 4.3,
the intersection operation on Bloom filters causes loss of
information and, thus, is not recommended as we show
in Fig. 4. Yet, using the no longer recommended 10 Hz
beaconing, which completely overloads the channel, shows
an astonishing performance improvement when using our
Bloom filter based neighbor management.

In summary, we can say that our Bloom Hopping ap-
proach increases the fraction of informed nodes and at the
same time lowers the channel utilization.
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7 CONCLUSIONS

We presented a novel probabilistic 2-hop neighbor manage-
ment approach using Bloom filters for application in dynamic
wireless networks. Compared to alternative solutions, the use
of Bloom filters provides best scalability of the system that
comes at the cost of a small false positive rate. We analytically
explored the Bloom filter properties for this application field
and determined best suited Bloom filter sizes to keep this
false positive rate marginally small. This also helps to prevent
overload on the wireless channel. We also explored the
capabilities of our solution to build a fundamental basis
for higher layer protocols. As an example, we designed the
multi-hop broadcast protocol Bloom Hopping, which very
efficiently selects forwarders using the Bloom filter encoded
neighbor information.

We performed an extensive simulation study to assess the
performance of the developed Bloom filter based neighbor
management as well as the Bloom Hopping protocol. For
the 2-hop neighbor management, we compared our Bloom
filter based solution with an oracle. For this, we carefully
explored theoretical reachability in the wireless network
ignoring interference and delays at the MAC protocol but
using a realistic path loss model. We clearly see that the
difference to the oracle is very small given that the Bloom
filter size has been adequately chosen for the application
scenario. We further demonstrated that the Bloom filter
approach can easily be tied to typical beacon protocols given
that they are able to provide simple congestion control. We
further found that higher beaconing rates not necessarily
lead to better and more accurate neighborship information,
which might be considered counter intuitive. The load on
the wireless channel has been confirmed to be the most
fundamental limit. Furthermore, Bloom filters as used in
our Bloom Hopping protocol help to improve information
dissemination and decrease channel utilization significantly.
This clearly shows the applicability of the Bloom filter based
neighborship information for higher layer protocols.

We want to emphasize that even though we investigated
our approach in a very specific application domain, namely
Vehicular Ad Hoc Networks (VANETs), the concept can be
applied also to other networking scenarios. Without loss
of generality it can be said, the Bloom filter based 2-hop
neighborship management as well as the Bloom Hopping
algorithm can be of benefit in all types of networks exhibiting
a very dynamic topology.
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