
LiveOppServation – An Open-Source Interactive
Evaluation and Simulation Frontend for OMNeT++

Jannusch Bigge and Christoph Sommer
TU Dresden, Faculty of Computer Science, Germany

https://www.cms-labs.org/people/ { https://www.cms-labs.org/people/bigge , https://www.cms-labs.org/people/sommer }

Abstract—Modern simulation environments require advanced
tools for real-time data visualization and interactive analysis.
This paper presents LiveOppServation, an open-source Dash-
based frontend for OMNeT++ simulations that enables continuous
runtime monitoring and visualization of simulation data. Our
system addresses limitations in traditional post-processing
approaches by providing three key capabilities: real-time
evaluation of vector data with timestamps, automatic generation
of live visualizations, and conditional data-based breakpoints for
targeted event analysis. Built on gRPC and Protocol Buffers, the
architecture supports scalable many-to-many mapping between
simulations and frontends, allowing simultaneous monitoring of
multiple simulations or collaborative analysis of a single simulation
from different perspectives. The design emphasizes flexibility
through modular components and extensibility for integration
with other simulation platforms.

I. INTRODUCTION

Live dashboards for data visualization are commonly sought
after not just in simulation [1], but in many domains, such as
health [2], machine learning [3] or, even more broadly, stock
trading. This is because research has repeatedly and consistently
demonstrated that dashboards are an effective way to present
real-time data to users [4].

In the context of OMNeT++ simulations [5], though, tradi-
tional approaches often restrict users to post-processing results,
or they require manual intervention and adaptation of the model
to inspect dynamic behavior.

Our work addresses these limitations by presenting
LIVEOPPSERVATION1 – an open-source interactive Dash-based
frontend that enables real-time monitoring and visualization of
simulation data during execution. This system provides several
key capabilities:

• Runtime Evaluation: Continuous observation of vector
data with timestamps, allowing users to inspect values as
they evolve during simulation.

• Live Plotting: Automatic generation of visualizations
from collected data, supporting both real-time analysis
and post-hoc inspection.

• Conditional Breakpoints: The ability to pause simula-
tions based on specific criteria met by the observed data,
enabling targeted investigation of critical events.

By leveraging widely adopted technologies like gRPC and
Protocol Buffers (protobuf), our solution offers a flexible
framework that can be extended to support additional simulation
platforms and visualization paradigms.

1https://www.cms-labs.org/research/software/liveoppservation/

II. RELATED WORK

The widespread use of dashboards has led to the development
of numerous tools designed to implement them. Grafana is
a popular open-source tool that allows the aggregation of
data from multiple sources. Shiny for R and Streamlit for
Python3 are tools used to create web-based dynamic dashboards.
Dash, an open-source framework for building dashboard web
applications in Python3, is based on the well-established Flask
web framework. It offers a wide range of existing components
and is also easy to extend. IEEE 1516-2025 [6] is a standard
for the development of distributed simulations, and IEEE
1278.2-2015 [7] defines how to develop interactive distributed
simulations, primarily focused on military applications.

Recent work has explored the use of web-based dashboards
for simulation-data visualization. For instance, Jung et al. [1]
developed a data visualization tool for VISSIM to investigate
traffic simulations, with data stored in the cloud and utilizing
elastic search for querying and visualization. Kourzanov [8]
created a live interaction system for ns-3 that integrates directly
with Julia notebooks and offers real-time analysis. Šljivo
et al. [9] implemented a nodeJS-based web interface for ns-3
to study IEEE 802.11ah, enabling dynamic data exploration
and visualization. Köstler and Kauer [10] developed a remote
interface for OMNeT++ using Autobahn|JS, jQuery, and
ChartJS. Their implementation requires a client-side connection
to the simulation, to store simulation results and a solid
understanding of JavaScript for modifications of the frontend.

These solutions often focus on specific simulation platforms
or lack the scalability and flexibility needed for broader
applications.

III. SYSTEM DESIGN

We designed the system to support a many-to-many mapping
between simulations and frontends. This allows multiple
simulations to be monitored by a single frontend, enabling
parallel evaluation of multiple repetitions or configurations.
Conversely, multiple frontends can inspect a single simulation,
allowing different variables and formulas to be analyzed from
the same simulation independently.

The connection between the simulation and frontend is
established using gRPC. The data is encoded on the wire using
protobuf. This provides a robust and flexible data exchange
mechanism that could also be used flexibly in combination
with other communication mechanism – like ØMQ – in the
future.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

DS-RT 2025 – Posters



frontend backend

application

logic

gRPC

simulation model

gRPC

statistics

kernel

result recorder

Figure 1. System architecture with frontend (containing the dashboard as an
application and the data in the logic component) and the backend (containing
the simulation kernel with the new vector result recorder and the statistics
module in the simulation model) connected via gRPC. The results from a
module are stored using the kernel’s result recorder and can be accessed
from the frontend through the statistics module. The frontend also stores and
analyzes the data within its logic.

A. Frontend

The frontend is built using Dash, a Python3 framework based
on Flask that allows for easy integration with Plotly and offers
a wide range of HTML components.

The logic for maintaining connections and managing simula-
tions and data is separated from the Dash application, making it
possible to exchange visualization components independently.

The user interface (cf. Figure 2) consists of four main parts:
• general settings, includes connecting and selecting a

simulation, and requesting time information;
• vector metadata, which provides a list of all registered

vectors that can be filtered and used to select which data
to send to the frontend;

• vector data, which displays the actual data from the
selected vectors in both a table and a plot;

• and a debug watch list, which allows users to observe
specific vectors and values and set conditional breakpoints.

Figure 2. Screenshot of LIVEOPPSERVATION prototype.

B. Backend

The first new backend feature is a vector result recorder –
which is part of the simulation kernel. This recorder is respon-
sible for capturing and storing simulation data during runtime
emitted by the modules with the corresponding timestamp. By
default, OMNeT++ provides two types of result recorders: one
that stores results to a file and another that stores them to
an SQLite database. Furthermore, OMNeT++ provides a base
vector recorder, which serves as a foundation for the creation
of new ones, which we used to create a recorder that stores all

results in memory using C++ structures and added functions
that allow us to query and access the data during runtime.

The second functionality is a statistics module. This module
is responsible for establishing a connection to the frontend,
maintaining the debug watch list, and instructing the recorder
to yield data when specific conditions are met. This module is
implemented as a standard OMNeT++ module, which means
it can be easily configured through the omnetpp.ini file. It
also allows us to make the result recording independent of
the connection to the server, enabling easy extensions and
modifications. Creating a module within the simulation also
allows efficient listening of emitted signals, which are the
preferred way for the statistics recording.

These design choices ensure that the module and the result
recorder can be seamlessly integrated into existing simulation
setups without requiring modifications to the simulation kernel
itself.

IV. CONCLUSION AND FUTURE WORK

We were able to create an independent custom frontend for
OMNeT++ simulations that can be used to watch and evaluate
results of multiple simulations during runtime for evaluation or
debugging. By using widely adopted technologies like gRPC
and Protocol Buffers (protobuf), we were able to create a
flexible and easily extensible system.

In the future we want to implement the ability to adjust
parameters during runtime and the aggregation of multiple
simulation results in one database.

Also, a new vector result recorder will be created that
forwards the data to both the newly created in-memory recorder
and to a second persistent recorder, defined by the user.

REFERENCES

[1] J. Jung, T. Oh, I. Kim, and S. Park, “Open-sourced real-time visualization
platform for traffic simulation,” Elsevier Procedia Computer Science,
vol. 220, pp. 243–250, 2023.

[2] U. Buchholz, A.-S. Lehfeld, A. Loenenbach, K. Prahm, U. Preuß, and
W. Haas, GrippeWeb - Daten des Wochenberichts, Jul. 2025. [Online].
Available: https://robert-koch-institut.github.io/GrippeWeb_Daten_des_
Wochenberichts/

[3] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems, White Paper, 2016.

[4] A. Perer and B. Shneiderman, “Integrating statistics and visualization:
case studies of gaining clarity during exploratory data analysis,” in
SIGCHI Conference on Human Factors in Computing Systems (CHI’08),
Florence, Italy: ACM, Apr. 2008, pp. 265–274.

[5] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in 1st International ICST Conference on Simulation
Tools and Techniques for Communications, Networks and Systems
(SIMUTOOLS 2008), Marseille, France: ICST, 2008.

[6] “Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) – Framework and Rules,” IEEE, Std 1516-2025, 2025.

[7] “Standard for Distributed Interactive Simulation (DIS) – Communication
Services and Profiles,” IEEE, Std 1278.2-2015, 2015.

[8] P. Kourzanov, “Live network simulation in julia: design and implemen-
tation of LiveSim.jl,” in 10th Workshop on ns-3 (WNS3 ’18), Surathkal,
India: ACM, 2018, pp. 30–36.

[9] A. Šljivo, D. Kerkhove, I. Moerman, E. De Poorter, and J. Hoebeke,
“Interactive web visualizer for IEEE 802.11ah ns-3 module,” in 10th
Workshop on ns-3 (WNS3 ’18), Surathkal, India: ACM, 2018, pp. 23–29.

[10] M. Köstler and F. Kauer, “A Remote Interface for Live Interaction with
OMNeT++ Simulations,” in 4th OMNeT++ Community Summit, Bremen,
Germany: arXiv, 2017.


