A GNU Radio-based IEEE 802.15.4 Testbed

Bastian Bloessl, Christoph Leitner, Falko Dressler, and Christoph Sommer
Computer and Communication Systems, Institute of Computer Science, University of Innsbruck, Austria
{bloessl ,christoph.leitner,dressler, sommer}@ccs—labs .org

Abstract—We present a Software Defined Radio (SDR) based
IEEE 802.15.4 transceiver testbed for GNU Radio. Our testbed is
Open Source and fully interoperable with off-the-shelf TelosB
sensor motes and the Contiki sensor mote operating system,
from the physical layer to the network stack. The testbed can
be setup and configured easily via a graphical user interface
and applications can interface with the SDR using TCP sockets.
Furthermore, the SDR is able to log traffic in PCAP format to
investigate networks with common software like Wireshark.

We believe the main applications of the transceiver to be two-
fold. First, the communication stack has a modular, layered
structure, which allows for rapid prototyping, is educational,
and is easy to grasp, lowering the steep learning curve that
SDRs typically have. Secondly, the integration of a network stack
in GNU Radio pushes interoperability from the physical to the
network and application layer and thus enables the investigations
of higher layer metrics with SDRs.

I. INTRODUCTION

Due to their multitude of possible applications, Wireless
Sensor Networks (WSN5s) are still an active research topic. The
application scenarios for these networks range from medical
monitoring for drug dispense, environmental monitoring for
precision agriculture, over industrial real-time monitoring of
production systems, to event detection systems like burglar
alarms. Since its release in 2003, IEEE 802.15.4 [1] emerged
as the de-facto standard for these networks, enabling higher
layer standards like WirelessHart, ZigBee or 6LoWPAN.

The success of the standard is also visible in the fact that,
today, there are twelve different physical layers proposed [2].
Starting with an O-QPSK physical layer with channels in the
700 MHz to 900 MHz and 2.4GHz ISM-bands, IEEE 802.15.4
networks are now even considered as secondary users on locally
unoccupied parts of the spectrum like TV white space.

For that reason, system designers not only have to decide
between different frequency bands, but also between completely
different wireless technologies, like O-QPSK, GFSK, or OFDM,
i.e., selecting from a spectrum that ranges from single to multi-
carrier systems. It is therefore crucial to be able to compare
and evaluate the performance of these different physical layer
technologies. Furthermore, as WSNs are extremely application
specific, it is important not to be limited to physical layer
metrics like Signal to Noise Ratio (SNR) and packet loss, but
to have the opportunity to compare application layer behavior
and metrics like true goodput.

Experimentation is a valuable instrument that can comple-
ment analytic and simulative performance evaluation of wireless
communication systems to considerably increase the confidence
in the results.

Currently, there are two general approaches to conduct
experimental research. First, one can rely on off-the-shelf sensor
motes. This approach is easy to realize and, due to typically
relatively cheap motes, a larger network can be investigated
with moderate costs. The drawback of using real motes is,
however, that the insights are limited to the information that the
transceiver chip provides. Off-the-shelf sensor mote testbeds are,
therefore, well-suited to investigate application layer metrics,
but might lack the possibility to explain some of the effects,
as advanced metrics are not accessible. For example, it can
be hard to determine if outage occurred due to interference or
due to noise, as ordinary transceiver chips do not provide any
information about packets that could not be decoded. Another
potential drawback is that off-the-shelf motes can not be used
to investigate new physical layer strategies. Furthermore, for
some of the proposed physical layers, there are no consumer
devices available yet.

A second approach for conducting experimental research
is the use of Software Defined Radios (SDRs), where signal
processing is done in software instead of being hidden inside
a transceiver chip. An SDR system consists of a software
framework for real-time signal processing and a hardware
RF frontend to send and receive the signal. With such a
reprogrammable system the user has full control over all signal
processing steps. The drawback of SDRs is that they add cost
and complexity. SDR-based systems are often not accessible for
non-experts in signal processing. Furthermore, these systems
are often limited to physical layer implementations only and,
thus, are not interoperable with real sensor motes on higher
layers, i.e., the SDRs can not become nodes in a WSN.

We bridge this gap by providing an SDR based IEEE
802.15.4 testbed that provides a fully interoperable network
stack. The testbed is implemented based on GNU Radio and
implements the communication stack from the physical up to
the network layer, where applications can be attached easily.
As network layer, we choose the Rime stack [3]. Rime is
a modular, lightweight network stack, which is part of the
Contiki operating system. Contiki [4], in turn, is a state-of-
the-art operating system for research in WSNs. With the help
of the Rime stack, the SDRs can be easily integrated into a
WSN, or form a heterogeneous network consisting of sensor
motes and SDRs.

We make all GNU Radio code, a demo application, and a
Contiki firmware available as Open Source software in the
hope that it might be useful for others.!

L All source code can be downloaded from http://www.ccs-labs.org/software/.

II. RELATED WORK

The O-QPSK physical layer of the IEEE 802.15.4 standard
was first implemented by Thomas Schmid in 2006 [5]. This
implementation featured separated receive and transmit chains
and was verified to work with Crossbow MicaZ motes.

This implementation provided the base for several further
research projects. It was used to study properties of the physical
layer and the applicability of SDRs to conduct wireless research
in general.

The potential of SDR based testbeds for wireless research in
sensor networks was already realized by Ali et al. [6], urging the
community to move from simulations to SDR based prototypes.
In [7], the authors go one step further and discuss the idea
of Cognitive Radio Sensor Networks. These networks exploit
the flexibility of SDRs by applying cognitive radio strategies
to sensor networks. An actual testbed for wireless research
is presented in [8], where the authors prototype protocols in
SDRs and on real hardware, but focus only on the MAC layer.

In all SDR implementations latency is a crucial factor, as
the standard mandates strict maximum response times. For
that reason, the latency of the GNU Radio implementation is
studied by Thomas Schmid et al. in [9] by means of Round
Trip Time (RTT) measurements.

Using SDRs connected via USB 2.0, the RTT of the SDR
was an order of magnitude higher than the RTT of MicaZ
motes. Furthermore, the RTT of the SDR suffered from high
variances, whereas the RTT of the MicaZ motes was very
deterministic. Given these results, the latency bounds that the
IEEE 802.15.4 standard mandates could not be met.

The more recent USRP2 SDRs are connected via Gigabit
Ethernet. This, together with the advances of GNU Radio,
most notably the Vectorized Library of Kernels (VOLK) [10],
should lower latency considerably. The VOLK library is part of
GNU Radio and allows the use of Single Instruction Multiple
Data (SIMD) operations. As SIMD instructions operate on
vectors instead of scalars, the performance can be improved
considerably.

In [11], the IEEE 802.15.4 implementation was further
extended to support multi-channel reception with the N210
USRP SDRs. Compared to the USRP1, the N210 provides a
higher bandwidth and allows to decode five adjacent channels
in parallel.

III. TRANSCEIVER ARCHITECTURE

Figure 1 gives an overview of the transceiver structure as
exposed to GNU Radio Companion, a GUI that can be used to
setup and configure signal processing flow graphs. The layered
structure of the communication system can be identified clearly.
In the following, we describe the individual components.

A. Physical Layer

For our tests and development of the receiver, we used USRP
N210 SDRs from Ettus Research, equipped with XCVR2450
daughterboards as radio frontend. These daughterboards can
operate on the 2.4 GHz ISM band in half-duplex mode.

Socket PDU
e Type: UDP Server
Application .
Port: 52001
MTU: 10k
in bcout
uen RIME Stack @
Network RIME Address: 23, 42
rucin [rucout
[fromMAC [toMAC
== -
EER2% \eeg02.15.4 MAC 22
MAC Debug: Disable
in)
PHY IEEE802.15.4 PHY
8
a £
LB F
£86¢8
H 9
UHD: USRP Sink UHD: USRP Source FERE
. . TEs®
Hardware Samp Rate (Sps): 4M Samp Rate (Sps): 4M TEge
Cho: Center Freq (Hz): 2.48G Cho: Center Freq (Hz): 2.486 s3 8
ChO: Gain (dB): 30 Cho: Gain (dB): 30 5%

Figure 1. The modular, layered structure of the SDR transceiver as exposed to
GNU Radio Companion. The physical Layer is encapsulated in a hierarchical
block. The packets between the MAC and the physical layer are captured
by the Wireshark Connector (in this case only outgoing packets to preserve
clearness of the Figure).

The USRP source and USRP sink blocks in Figure 1 are
interfacing this hardware. These blocks are connected to the
physical layer, which is encapsulated in a hierarchical block,
that hides all details of the modulation process. In GNU Radio,
a hierarchical block does not implement an algorithm itself but
contains another flow graph. This concept supports modularity
and allows a clearer structure.

From the multitude of physical layers that are included
(or, rather, are proposed to be included) in the IEEE 802.15.4
standard, currently only the O-QPSK PHY is implemented.
This physical layer defines 16 channels in the 2.4 GHz band.
The implementation is based on the UCLA ZigBee PHY of
Thomas Schmid [5]. We extended it by porting it to version
3.7 of GNU Radio, we added GNU Radio Companion bindings
in order to access the blocks in the graphical user interface,
we reimplemented all python functions in C++, we changed
the transmitter to GNU Radio blocks (i.e., removed custom
blocks that are not needed anymore), and finally merged the
separated receive and transmit chains to operate in parallel to
form a transceiver system.

Creating a transceiver out of separated receive and transmit
chains is not as straight forward as it might sound. Since
we use half-duplex radio frontends, the USRP has to switch
between send and receive mode for every packet that is
sent. This happens automatically, in the sense that by default
the USRP receives and switches to transmission mode if it
receives samples from GNU Radio. The switch from receiving
to transmitting is no problem, however the other way round
is. When a packet (i.e., a burst of samples) is sent and the
sample stream to the device stops, the USRP first assumes that
an underflow occurred, i.e., the PC can not deliver the samples
fast enough. For that reason, the device does not switch back

r--==== Ny T T T T T T T T T T
[} I i
' PPE?C_t_:L___Me_St‘____I (Jimplemented Parameters: Bano [beouto)
e ————— Ny T T \
I Multihop :: Route Discovery ! D ieee802_15_4_rime_stack_0 oot | lbcouty
| P —— P - ————————
(ot JiNeiooajiioie} | s g (=
Nt I '\ _____) Unicast Channels [[131,132] E RIME Address: 23 42 @l
Reliable Unicast Channel{[134] |
[Broadcast] RIME Address ([23/42) l Tucin [rucout]
[fromMAC] JoMAC
[Anonymous Broadcast] cancel oK

(a) Overview of the modular structure of the Rime stack. Each
protocol makes use of its underlying primitives. Solid components
have been implemented in our testbed.

(b) Configuration interface of the Rime block with ports
dynamically created by the given parameter set.

(c) Resulting block instance.

Figure 2. Overview of the Rime stack and implementation in GNU Radio.

to receive mode immediately, but instead waits until a timeout
occurs. The problem, however, is that when communicating
with real hardware like the TelosB motes, this timeout period
is too long and immediate responses like acknowledgments are
missed, as the device is still in transmit mode.

To deal with that issue, we insert a tag at the start of each
burst that indicates its length, i.e., the number of samples that
the burst spans.> We added a block just before the USRP sink,
which reads the length tag and, with this additional length
information, is able to signal the USRP when the end of the
burst is reached. Thus, the timeout before switching back to
receive mode is avoided.

B. MAC Layer

As depicted in Figure 1, the MAC layer is implemented
on top of the physical layer. The colors of the ports encode
the type of data that is exchanged between the blocks. Gray
is used to depict asynchronous messages ports, which were
introduced in GNU Radio v3.6.3. Asynchronous messages allow
to work packet-based, as opposed to stream-based — the mode
in which most of the physical layer blocks are working in.
Asynchronous messages can encapsulate arbitrary information
by the use of polymorphic types. The GNU Radio developers,
however, agreed on a Protocol Data Unit (PDU) format. A
PDU is represented by a pair consisting of a dictionary and a
character buffer. The buffer is used to store the actual data of

the packet, while the dictionary can contain arbitrary metadata.

The MAC block is currently limited to the most basic
functionality that enables connectivity. It encapsulates the
packets from the higher layers with a valid IEEE 802.15.4
header and calculates and appends the CRC checksum. On the
receive path, it does the reverse, removing the MAC header
and checking whether the CRC is correct.

In particular, the MAC layer does not perform carrier sensing,
but instead sends a message immediately. For that reason,
the MAC layer does not yet support any other CSMA/CA
functionality like backing off in time.

2In GNU Radio, tags can annotate specific samples of the sample stream
with arbitrary information.

C. Rime Network Stack

The Rime communication stack is a lightweight network
stack, designed for use in WSNs. It was implemented for
Contiki by Dunkels et al. [3]. Contiki is a state-of-the-art
operating system for WSNs and is, like TinyOS, heavily used
and well accepted in the research community.

As depicted in Figure 2a, Rime has a modular, layered
structure, where more complex connection primitives extend
the underlying simpler ones to offer advanced features. The
solid blocks in Figure 2a depict the connection primitives that
are currently included in our SDR implementation.

The communication stack can be setup completely with a
graphical user interface. Figure 2b shows the configuration
interface of the Rime stack in the GNU Radio Companion
GUI frontend. The user can open new Rime connections
by adding channels numbers to the list corresponding to the
desired connection type. We tweaked GNU Radio so that it is
possible to dynamically create input and output message ports.
This way, we can add a new pair of input and output port
per connection. Figure 2¢ depicts the Rime block, generated
by the given configuration. We see two pairs of broadcast
and unicast connections (labeled bcinX, bcoutX, ucinX, and
ucoutX) and a reliable unicast connection (labeled with rucin
and rucout). Furthermore, we can configure the Rime address
of the transceiver.

Considering unicast connections, the application has to
specify the destination node on a per-packet basis, like it
is the case for common UDP sockets. This is required as Rime
operates connection-less. We decided to prefix the actual packet
payload with the destination address of the target node in order
to provide an easy to use interface to the SDR.

IV. PCAP AND WIRESHARK CONNECTOR

To ease debugging and to allow monitoring communications
in the WSN, we implemented a module that logs all transmis-
sions in PCAP format?, the de-facto standard format for packet
dumps. PCAP is understood by all network monitoring tools
like Wireshark or tcpdump. These tools also provide useful
additional functionality like throughput and delay calculations.

3http://www.tcpdump.org/

We dump the network traffic with the Wireshark Connector
block, which is depicted at the right hand side of Figure 1.
When the block is started it writes a PCAP file header that
includes global parameters like maximum packet size and the
utilized technology. Every packet that is passed between MAC
and physical layer is prefixed with per-packet information and
logged. The per-packet header contains information about the
packet size and includes a time stamp that indicates when the
packet was received. The PCAP file can either be written to
disk or to a Linux pipe where Wireshark can be attached to.
With the help of the pipe the network can be monitored live.
We utilized the Wireshark connector to get first insights into
the latency of the presented transceiver. We ran the transceiver
on a laptop with an Intel i5 CPU (2.6 GHz) and measured the
RTTs between an SDR and a TelosB mote to be around 5 ms.

Wireshark supports ZigBee and, thus, can dissect the IEEE
802.15.4 MAC format, but not the Rime protocol headers. We
therefore also implemented a dissector for Rime in LUA.

To demonstrate the capabilities of the testbed, we im-
plemented and made available a Contiki firmware for the
TelosB sensor mote platform. By default this firmware opens
a broadcast connection and periodically disseminates the
values of the light sensor on that connection. Furthermore,
a notification is sent over that connection when the button is
pressed.

It is extremely easy to connect to the flow graph with the help
of the Socket PDU block. Connecting to the Rime connection
of the flow graph and printing of the sensor values can be done
with a line of shell code:

nc —-u localhost 52001 | od -vsw2

As shown in Figure 3, we also provide a more visual
representation of the results in a GUI that uses matplotlib
to draw a live graph of the sensor values. Furthermore, the
firmware includes a shell application where the user can connect
via a serial connection over USB and dynamically open new
connections and send messages on them.

V. CONCLUSION

We created a GNU Radio-based IEEE 802.15.4 testbed. The
testbed is interoperable with real sensor motes on physical
layer, and with Contiki, a state-of-the-art operating system for
WSNs, on network layer. With this level of interoperability it is
possible to set up a mixed network, consisting of off-the-shelf
sensor motes and SDR-based transceivers. The SDR-based
transceiver can be setup and configured quickly with the help
of a graphical user interface. The whole communication stack,
from physical to application layer, is implemented within the
SDR system. Applications can be attached to the transceiver
via TCP or UDP sockets.

Debugging, logging, and monitoring of the communication
is aided by an option to capture all traffic in PCAP format.
To further increase usability, we implemented a Wireshark
dissector that parses the utilized protocols. Finally, the platform
is accessible as it is Open Source.

20.560033 RIME
39.930974 RIME
41.580118 RIME

o wire (280 bitS)

Figure 3. An example setup, consisting of a USRP N210 and a TelosB mote
that periodically sends light sensor data that is displayed in the graph on the
right screen. On the left screen, the whole communication is monitored in
Wireshark.

This transceiver represents a proof of concept implementation
that is interoperable with real sensor motes. With this as
a starting point, we hope to provide a tool that facilitates
rapid prototyping of new physical layers, and that allows the
investigation of application layer metrics with SDRs.

REFERENCES

[1] “Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE, Std
802.15.4-2011, June 2011.

[2] C.-S. Sum, L. Lu, M.-T. Zhou, F. Kojima, and H. Harada, “Design

Considerations of IEEE 802.15.4m Low-Rate WPAN in TV White Space,”

IEEE Communications Magazine, vol. 51, no. 4, pp. 74-82, April 2013.

A. Dunkels, F. Osterlind, and Z. He, “An Adaptive Communication

Architecture for Wireless Sensor Networks,” in 5th ACM Conference on

Embedded Networked Sensor Systems (SenSys 2007). Sydney, Australia:

ACM, November 2007.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th IEEE
International Conference on Local Computer Networks (LCN 2004),
Tampa, FL, November 2004, pp. 455-462.

[5] T. Schmid, “GNU Radio 802.15. 4 En-and Decoding,” Networked &
Embedded Systems Laboratory, UCLA, Technical Report TR-UCLA-
NESL-200609-06, June 2006.

[6] M. Ali, U. Saif, A. Dunkels, T. Voigt, K. Romer, K. Langendoen,
J. Polastre, and Z. A. Uzmi, “Medium Access Control Issues in Sensor
Networks,” ACM SIGCOMM Computer Communication Review (CCR),
vol. 36, no. 2, pp. 33-36, April 2006.

[7]1 O. B. Akan, O. B. Karli, and O. Ergul, “Cognitive Radio Sensor

Networks,” IEEE Network, vol. 23, no. 4, pp. 34-40, July 2009.

X. Zhang, J. Ansari, L. M. A. Martinez, N. A. Linio, and P. Mihonen,

“Enabling Rapid Prototyping of Reconfigurable MAC Protocols for

Wireless Sensor Networks,” in IEEE Wireless Communications and

Networking Conference (WCNC 2013). Shanghai, China: IEEE, April

2013, pp. 47-52.

T. Schmid, O. Sekkat, and M. B. Srivastava, “An Experimental Study of

Network Performance Impact of Increased Latency in Software Defined

Radios,” in 2nd ACM International Workshop on Wireless Network

Testbeds, Experimental evaluation and Characterization (WiNTECH’07).

Montréal, Québec, Canada: ACM, September 2007, pp. 59-66.

T. Rondeau, N. McCarthy, and T. O’Shea, “SIMD Programming in GNU

Radio: Maintainable und User-Friendly Algorithm Optimization with

VOLK,” in Conference on Communications Technologies and Software

Defined Radio (SDR’12). Brussels, Belgium: Wireless Innovation Forum

Europe, June 2012.

L. Choong, “Multi-Channel IEEE 802.15.4 Packet Capture Using

Software Defined Radio,” Networked & Embedded Systems Laboratory,

UCLA, Technical Report TR-UCLA-NESL-200904-01, April 2009.

[3

=

[8

[t}

[9

—

[10]

(11]

