Efficient Pareto Optimality-based Task Scheduling
for Vehicular Edge Computing

Joahannes B. D. da Costa*T, Allan M. de Souza*, Denis Rosério?, Christoph Sommer, Leandro A. Villas*
*University of Campinas (UNICAMP), Institute of Computing (IC), Brazil
{Federal University of Pard (UFPA), Institute of Natural Sciences (ICEN), Brazil
TTU Dresden, Faculty of Computer Science, Germany
Contact: {joahannes.costa, allan.souza, leandro} @ic.unicamp.br, denis@ufpa.br, cms-labs.org/people/sommer

Abstract—Vehicular Edge Computing is a promising paradigm
that provides cloud computing services closer to vehicular users.
Vehicles and communication infrastructure can cooperatively
provide vehicular services with low latency constraints through
vehicular cloud formation and use of these computational re-
sources via task scheduling. An efficient task scheduler needs
to decide which cloud will run the tasks, considering vehicular
mobility and task requirements. This is important to minimize
processing time and, consequently, monetary cost. However, the
literature solutions do not consider these contextual aspects
together, degrading the overall system efficiency. This work
presents EFESTO, a task scheduling mechanism that considers
contextual aspects in its decision process. The results show that,
compared to state-of-the-art solutions, EFESTO can schedule
more tasks while minimizing monetary cost and system latency.

I. INTRODUCTION

Vehicles are becoming more autonomous, intelligent, and
connected [1]. In this context, the demand for vehicle-based
services will grow and increase bandwidth consumption,
which can cause network core congestion and data delivery
failures [2]. In this sense, it is essential to guarantee low la-
tency levels for such services to meet the application demands
with real-time requirements, such as mechanisms based on
machine learning or services oriented to Artificial Intelligence
for connected vehicles. However, meeting these restrictions is
not straightforward due to the vehicular network dynamics [3].

The Vehicular Edge Computing (VEC) paradigm emerges
by baking advantage of the vehicular communication capacity
provided by Vehicular Networks (VANETs) and the com-
putational power also included in modern connected vehi-
cles. VEC aims to use computational resources in vehicles
and communication infrastructures as cloud services, bring-
ing computational power closer to vehicular users [4], [5].
In a VEC architecture, there is a network controller for
each predefined region of the city, called a VEC controller,
which builds and maintains knowledge about vehicles through
Vehicle-2-Everything (V2X) communication between vehicles
and communication infrastructures, i.e., Base Stations (BSs),
allowing more dynamic and precise control rules [2]. In this
way, the VEC controller forms Vehicular Clouds (VCs) with
computational resources available in vehicles and BSs.

The VEC controller can run VC Formation, and Task
Scheduling processes [3]. In the first process, the VCs are
formed by grouping and managing of computational resources

(vehicles and BSs), specifically processing and storage re-
sources. The second process refers to efficiently use these
computational resources by means of a task scheduling mech-
anism, which will be focus on this work. In short, task
scheduling makes it possible to use resources transparently by
applications/services that require computational power above
the locally supported [5].

However, due to common properties of VANETS (i.e., high
vehicular mobility and intermittent connections), performing
task scheduling in VCs has some challenges. In this sense, at
least three points must be taken into account for efficient task
scheduling in VCs: (1) High Vehicular Mobility causes unex-
pected disconnections between vehicles and VEC controllers,
causing interruptions and delays in return for scheduling
results. With this, vehicular mobility information can assist in
selecting more stable VCs in this process, with less variation
in its resources over time. (2) Deadline Constraints, where
after processing the task in a VC, the result must be returned
before a specific deadline. Otherwise, this result becomes
useless [6]. Therefore, scheduling must consider task deadline
constraints in their decision process to increase its success
rates. (3) Monetary Cost, where it is necessary to pay for the
use of another computational resource. Therefore, scheduling
mechanisms must always minimize costs for end-users.

In this context, considering mobility aspects, deadline con-
straints, and monetary costs for decision-making in a task
scheduling process is an open point in the literature. Observing
vehicular mobility is fundamental to estimating the future
availability of resources in each VC. In the same direction,
the tasks’ deadline constraints can be better observed and
considered from a resource availability estimate in the VCs,
making it possible to infer the processing time and the
service probability. Finally, the monetary cost estimates can
be minimized by knowing the processing time of the tasks.

Considering the challenges mentioned, this paper presents
EFESTO (EFficient parEto optimality-baSed Task scheduling
for vehicular edge cOmputing). The mechanism runs on VEC
controllers to select tasks for scheduling based on Pareto
optimality. The EFESTO considers the context regarding the
vehicle mobility to provide resources for the VCs and the task
requirements. Also, the scheduling employed by EFESTO is
concerned with minimizing processing time in VCs, reducing
resource utilization time and, consequently, its monetary cost.

(© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE 96th Vehicular Technology Conference (VTC-Fall 2022)

Therefore, EFESTO goals include maximizing the number
of tasks scheduled in VCs and minimizing monetary costs
through decision-making based on joint minimizing processing
time and task deadline. We compared the performance of
EFESTO with other approaches in the literature, and the
results indicate its ability to schedule a greater number of
tasks, minimize the monetary cost, and minimize the tasks’
processing time.

In brief, the key contributions of this paper are:

o Introduction of a task scheduling mechanism that maxi-
mizes the number of tasks scheduled without increasing
the monetary cost of using computational resources.

« Efficient use of contextual aspects (mobility and task
requirements) in the decision-making process.

e In a detailed performance evaluation with a realistic
mobility trace, we show the necessity and outline the
benefits of joint optimization for the task scheduling
process compared to other state-of-the-art approaches.

This paper is organized as follows. Section II discusses the

related works. Section III presents the system model, problem
definition, and EFESTO’s operation. Section IV discusses the
performance evaluation and results obtained. Finally, Sec-
tion V provides final remarks and discusses future work.

II. RELATED WORK

Several works have been proposed for efficient task schedul-
ing in VEC environments, utilizing vehicular and edge infras-
tructure resources. For example, Hattab et al. introduced a
polynomial-time algorithm for task scheduling in VCs with
different computational resources [7]. First, the algorithm
classifies the tasks according to the completion and wait times
ratio. Afterward, it selects a task subset with the lowest pro-
portion and then solves a sequence of Linear Programs. Also,
a bottleneck assignment problem is formulated, where the goal
is to minimize the completion time of the scheduled tasks in
the available VC. However, this work does not consider the
mobility of vehicles for VC formation, i.e., a VC is stationary,
and the proposed algorithm considers only one VC.

Da Costa et al. presented a task scheduling mechanism for
VCs based on combinatorial optimization [4]. After a VC
formation process, a controller located at a higher level in the
network receives the requests for resources and schedules them
for processing in the available VCs using a pseudo-polynomial
algorithm for the 0/1 Knapsack Problem. However, the authors
do not consider contextual aspects in the scheduling decision
process. That is, the impacts of vehicular mobility and the
time requirements of the tasks are disregarded.

Pereira et al. introduced a mechanism using the Analytic
Hierarchy Process (AHP) to select the best task set to be
scheduled in the VCs, called FORESAM [8]. FORESAM aims
to maximize vehicular resource use, considering all the task re-
quirements in its decision process. FORESAM considers VCs
composed of vehicles and Roadside Units (RSUs). However,
FORESAM considers only one VEC controller and does not
define where it is inserted in the network. Depending on the
controller level, the requests will still pass through the network

Remote server
@ - .

VCs in region A OVCS in region B VEC controller

Fig. 1. System architecture.

core, which can cause congestion and, consequently, delays in
services. To circumvent problems with mobility, the authors
prioritize processing time in decision-making.

Luo et al. presented an analysis of the delay and cost
for task scheduling in VCs [3]. A scheduling framework
with communication and computation for VCs is established,
considering tasks with different requirements. Thus, a multi-
objective problem is formulated to minimize both delay and
cost. For this, a scheduling algorithm based on Particle Swarm
Optimization is proposed to obtain Pareto-optimal solutions.
However, due to its bio-inspired approach, its convergence
time can affect the solution’s overall performance. Further-
more, the authors do not consider vehicular mobility a re-
quirement in the scheduling process.

Wau et al. investigated the task scheduling considering the
vehicular mobility effects in the VEC environment [9]. Specif-
ically, the authors formulate a joint optimization problem in
a Min-Max perspective to reduce the overall latency in task
scheduling. Furthermore, mobility prediction is considered to
obtain better results considering a vehicle’s relatively stable
movement patterns in a short period. However, the mobility
model is unrealistic as vehicles need constant acceleration
during task scheduling and resource allocation.

Based on the state-of-the-art analysis, it is possible to
observe that these works, for the most part, do not consider
vehicular mobility in their scheduling decision processes.
Depending on specific situations, deploying in more dynamic
environments is challenging. Furthermore, even considering
some task requirements for decision-making, such as task
size and deadline constraints, the works do not consider them
together with other contextual information, such as vehicular
mobility that dictates the dynamics of resources in the network.

III. SYSTEM OVERVIEW

This section describes the EFESTO mechanism, which
considers VEC controllers for selecting the best VCs for task
scheduling. Also, EFESTO uses Pareto optimality to select the
set of tasks to be scheduled, joint minimizing processing time
and monetary costs.

A. Network and System Model

Figure 1 presents the system architecture composed of
vehicles, BSs, VEC controllers, and a Remote Server (RS)

in the Internet cloud. The scenario is composed of a set of
x vehicles, denoted as u; € U = {u,ug,...,u;}. Also,
a set of BSs deployed in the city is considered, denoted as
by € B = {b1,b,...,bp}, where p is the total number of BSs.
All BSs have wired communication with the Internet cloud,
and BSs can provide processing power and storage capacity
at the network edge.

Considering the presence of the 5G network, each BS
has an Xn interface, which allows the exchange of infor-
mation between neighboring BSs. Each vehicle has an On-
Board Unit (OBU) that allows vehicle-to-everything (V2X)
communication. For example, vehicles can associate with a
BS and communicate with a Remote Server (RS) to access
the Internet and request resources. The Maximum Signal-
Interference-Noise Ratio (Max-SINR) is used to associate the
vehicles to a BS. In this case, a vehicle will be associated
with a BS that provides the Max-SINR. In summary, for a
receiving vehicle ¢ located somewhere in the space covered
by at least one BS y, its corresponding SINR(7,y) = L;Pﬁ’
where P; is the signal strength of the BS in the vehicle ¢, I;
is the interference power, and NV is the Gaussian white noise
power spectral density [10].

In this scenario, the city is divided into R regions, and each
region has at least one BS. Furthermore, we consider a set
of VEC controllers, denoted as ¢, € C = {c1,¢2,...,¢c},
where e = |R| is the total number of controllers, and is
directly related to the number of regions R. Therefore, after
the association between vehicles and BS, the BS sends this
information to the RS. BS information is updated as the
number of vehicles in its coverage changes. In this way, each
VEC controller is responsible for managing the BSs in its city
region.

In the VCs formation process, the VEC controller needs
to ask the RS for information on BSs and vehicles to build
its regional knowledge. In this case, the Publish/Subscribe
paradigm is considered to obtain the relevant information with-
out introducing unwanted traffic into the network. Considering
that the number of VCs is the same as the number of BSs, the
VCs can be denoted by v; € V = {v1,v2,...,0m}, Where m
is the total number of VCs. So m = p. In summary, a VC
consists of a set of nodes (i.e., vehicles and BS) capable of
sharing processing power w (CPU cycle frequency in Millions
of Instructions Per Second (MIPS) and storage capacity ¢ in
Megabytes (MB).

In summary, w; denotes the vehicle’s CPU cycle frequency,
¢; denotes the vehicle’s storage capacity, w, denotes the
BS’s CPU cycle frequency, and ¢, denotes the BS’s stor-
age capacity. Therefore, each VC is represented by a tuple
{id;,vehicles;, bs;, total;}, where id; is the VC unique
identification, vehicles; are vehicular resources (w; and ¢;),
bs; are BS resources (w, and ¢,), and total; is the sum of
the resources in the VC (€2; and ®;). That is, the total amount
of processing power §2; and storage capacity ®; of each VC
v; is the sum of the shared resources of vehicles and BS that
make up these VCs.

Concerning the VCs’ resource variability over time, we

use vehicular mobility information to estimate the vehicles’
dwell-time in the BS coverage. An optimal mobility prediction
approach is used in this work, as mobility prediction is not our
focus. Information on future vehicle mobility is collected from
the vehicular dataset considering a K time window. However,
we added a white Gaussian noise for each collected data [11].
In this sense, as we now estimate the resources available in
the VCs in k € K time units, the resources available in the
VCs can be represented by €25, and ;.

B. Problem Definition

Each task t; € T = {t1,t2,...,t,} is denoted by a tuple
{id!, si, w}, D!} where id} represents the unique ID of the
task, sf (in MB) denotes the size of the task’s input data,
wlt in Millions of Instructions (MI) is the number of CPU
cycles required to process the task, and Dj is its deadline
constraint. According to the literature [6], the processing time
dfj (i.e., execution time of a task in a given computational
configuration) can be obtained based on the required CPU
cycle w] divided by the CPU cycle frequency of the server
Q;, as
wi

o, Vit € v;. (1)

dl; =

As VC’s computational resources are shared among the var-
ious tasks, the €); considered for processing time calculation
for a given task must be updated according to the degree of
sharing of this resource within the VC, represented by ¥ ;. So,
Q; is divided by the number of tasks |77 that were scheduled
in this VC to yield

U, =—3 jeV 2

Each task has a D} deadline constraint in its configuration.
This constraint represents a time limit that the task can wait
to be fulfilled. If dfj < Dj, then it means that the task can
be scheduled and executed in the VC v;. Also, when a task is
scheduled and starts to be processed, there is a cost associated
with this execution. The monetary cost is modeled as

C = dj; x (w] x P(t1)).)

Where dj; is the t; processing time in v; € V and wyj is its
CPU cycles required. P(t;) indicates the resource price used
and is set to 11.444 (if ¢; uses BS’s resources) or 5.016 (if
t; uses vehicles’ resources). The prices are based on instances
with GPU capacity available on Amazon EC2', such as g4ad
and g3 for BS and vehicle, respectively.

In summary, when a task arrives in the system, the VEC
controller must select the best VC to process that task. This
selection should consider the VC’s processing power over
time and the task requirements. So, to consider these different
objectives, a task scheduling problem was formulated that
primarily seeks to maximize the number of tasks scheduled

Uhttps://aws.amazon.com/ec2/dedicated- hosts/pricing/

7
6 4
i id-17

(] 5 ®
£ 4]
3 @id-18
831

2 @id-19

14 id-20

processing time estimated

Fig. 2. Pareto set example.

considering constraints that directly impact the monetary costs,
as follows:

n
maximize E t;, LeT,

“4)

=1
subject to dfj <DL leT, jeV, 5
Zsfgcpj,ﬁ leT, jeV, ke K, (6)

=1

n
waggw leT, jeV, ke K. (1)

=1
The constraint (5) guarantees that the task deadline is
respected and helps reduce the monetary cost, avoiding
rescheduling. Also, constraints (6) and (7) ensure that VCs’
storage and processing limits during the k required processing

time intervals are respected.

C. EFESTO’s operation

The problem of scheduling tasks in VCs needs to consider
more than one aspect during the decision process. Further-
more, the literature argues that the task scheduling problem
in VCs is N'P-hard [12]. Thus, EFESTO considers a Pareto
optimality approach to select the best task set to schedule in a
determined VC, minimizing de processing time and monetary
costs associated with this scheduling.

When tasks arrive in the system, they are queued. Tradi-
tional approaches schedule tasks based on the organization
in that queue. However, as the processing time and dead-
line of the tasks are crucial factors, EFESTO prioritizes the
minimization of these aspects in its decision-making process.
That is, if a scheduling choice returns a lower processing time
than another, the use of resources will also be minimized. In
the same way, the monetary cost associated with the lower
processing time will also be minimized. However, to perform
this selection, EFESTO needs to know the processing time
of all queued tasks. In this step, Equation (1) estimates the
processing time since it is unknown how many tasks will be
scheduled in this VC.

In short, EFESTO searches for the Pareto set using as
a criterion the joint minimization of task processing times
and task deadlines and creating a vector for each criterion
(processing time and deadline). Therefore, the vectors are

arranged in a 2-dimensional plane, and the Pareto set is found.
Figure 2 presents an example of searching for the Pareto set
in a queue with 24 tasks. We can obtain a Pareto solution set
in 2-dimensional in polynomial time O(nlogn) [13].

Algorithm 1 describes the EFESTO’s operations in a VEC
controller. In this sense, the controller gets the VC set V'
and task set T, which gives the T” task scheduling set as an
output. The set V' is sorted non-increasing, so VCs with more
available resources are prioritized (Line 1). Two vectors are
created based on T, the first P for the estimated processing
time, and the second D for deadlines (Lines 3 and 4). EFESTO
calls the procedure PARETOSET with configuration for joint
minimization of vectors P and D (Line 5). The procedure
returns a set P containing the ID of the tasks that are part of
the minimal Pareto set. Also, the total number of resources
needed for this returned set is calculated (Line 6). After that,
for each task in the set, it is verified if the VC will have
available resources until its deadline Dlt (Line 8). If not, that
task is removed from the set P (Line 9). If so, its actual
processing time is calculated (Line 12). If the processing time
is longer than its deadline, the task is removed from P and
will be rescheduled in the next round. Otherwise, set P is
added to the scheduled tasks list 7”.

Algorithm 1: EFESTO
Input: task set 7" and VC set V
Output: scheduled tasks 7’
V' < decreasing order of available resources
foreach v; ¢ V do
P < processing time (t;,v;) for each t; € T
D < deadline of each t; € T'
‘P < PARETOSET({ P, D}, objective=[min, min])

R W N =

6 totalResources < Zw}, Vt; € P
=1
7 foreach t’ € P do

> Use predicted vehicular information here
8 if (¢’ + totalResources) < vj until D} then
9 P+« P\ {t'}
10 totalResources < totalResources — ¢’
11 else
12 dj; + Equation (1)
13 if dj; > D} then
14 | PPN\ {t}
15 else
16 | T'«P

17 return 17"

IV. EVALUATION

This section describes the methodology and metrics used to
evaluate the EFESTO’s efficiency. Simulations were performed
on a realistic mobility trace of Cologne, Germany, to analyze

(a) Cologne sub-map.

(b) BSs deployed in the city.

Fig. 3. Simulation scenario.

the efficiency of the EFESTO compared to other approaches
to task scheduling.

A. Scenario description and Methodology

The experiments were carried out with the Simulator of
Urban Mobility (SUMO), in version 1.10.0. The algorithms
were implemented in Python 3.8.10 and connected to SUMO
through the TraCl interface. The mobility trace of the TAPAS
Cologne? project was used, which reproduces vehicle traffic
in the city of Cologne, Germany. However, only a central sub-
map of 114 km? was considered (Figure 3(a)), with 2 hours of
vehicular mobility and up to 700 vehicles at peak times. The
simulation time was 600 seconds, with 100 initial seconds of
warm-up. The simulations were run 33 times to obtain a 95%
confidence interval.

The Bag-of-Tasks (BoT) applications were considered since
they can be executed outside the submission order. The tasks’
deadline varies between 3, 5, and 7 seconds. This is important
to generalize the representation of possible application classes.
VC formation intervals were 5 seconds. The arrival rate of
tasks A in the system is 1 tasks/second, following a Poisson
distribution. The communication ranges of vehicles and BSs
were 250 and 2000 meters, respectively.

Furthermore, the size assigned to the tasks was s} = [1, 10]
(MB) and the CPU cycles required varying in w] = [1,10]
(MI). The number of processing units per vehicle is 1 CPU,
which without loss of generality represents 1 MIPS. Each
vehicle’s storage capacity has been simplified to 1 MB. 14
BSs were used, and each one is capable of sharing processing
and storage resources, where such values were configured at
15 MIPS and 15 MB, respectively. 4 VEC controllers were
considered, and each can manage up to 4 neighboring BSs.
The BSs were arranged in the city following positioning infor-
mation provided by the TAPAS Cologne project (Figure 3(b)).

The metrics used for evaluation were: i) Scheduled Tasks
represents the percentage of tasks successfully completed; i4)
Monetary Cost refers to the time of use of the resources; 1)
System Latency refers to the processing time of the task in
a given computational configuration plus the queue waiting

Zhttp://kolntrace.project.citi-lab.fr/

time; and iv) CPU Time represents the time required for the
controller to make the scheduling decision.

We compared the performance of EFESTO with three ap-
proaches for task scheduling in VCs, namely: FCFS [7], which
implements a policy based on First Come, First Served (FCFS)
for scheduling tasks in the VEC environment; CRATOS [4],
which uses a pseudo-polynomial combinatorial optimization
approach in the task scheduling process; and FORESAM [8],
which uses a multi-criteria approach in its decision process.

B. Simulation Results

Figure 4(a) shows the percentage of successfully scheduled
and executed tasks. All approaches improve their performance
as the maximum deadline increases. This means that the mech-
anisms have more time for decision-making and can make
more mistakes until the deadline is reached. EFESTO can
schedule more than 85% of tasks in configurations with less
complex time constraints (maximum deadline 7). FORESAM
and FCEFS operate statistically similarly in this assessment.
CRATOS has the worst performance in all scenarios. This is
due to its decision strategy, which is only concerned with
the task’s size and an associated reward value employed
by its Knapsack Problem strategy, disregarding fundamental
aspects such as deadline and processing time. Tasks scheduled
with CRATOS have restrictions that are not considered in its
decision-making process. In the most challenging configura-
tion, with a maximum deadline equal to 3, EFESTO is still
superior, but managing to schedule only 65% of tasks.

Figure 4(b) shows the results regarding the system latency,
which includes queue waiting time and task processing time.
The lower the latency, it means the scheduling rounds are
efficient. In all the evaluations, it can be noticed that the
EFESTO reduces the system latency. This is mainly due to
the VCs selection employed by EFESTO, which minimizes
the task processing time and the deadline constraint. Based on
this, VCs will process tasks in less time. In this way, EFESTO
can handle a more significant number of tasks in a shorter time
than other approaches. Besides, mobility information helps
estimate future resources, guaranteeing EFESTO lower error
rates in its scheduling process. CRATOS has higher latency
due to its decision-making prioritizes the task size. On the
other hand, FORESAM and FCFS operate similarly. However,
FCFS has a slight advantage in the least challenging scenario
(maximum deadline 7). In summary, EFESTO better managed
computational resources by jointly considering contextual as-
pects of tasks and VCs in its decision-making process.

Figure 4(c) presents the monetary cost of using the VCs’
computational resources. In general, to minimize monetary
costs, approaches choose first to select vehicular resources for
scheduling. It can be noted that the EFESTO minimizes the
monetary cost in all evaluations performed. In this case, it
is natural that the performance of all mechanisms drops due
to the percentage of scheduled tasks that also fit into more
challenging scenarios (Figure 4(a)). The best performance
of EFESTO is due to the selection of tasks considering the
future resources available in the VC. The application of Pareto

EECRATOS EEIFCFS EEEFORESAM EEMEFESTO ESICRATOS EEIFCFS EEIFORESAM EMIEFESTO

2.5

#)
<
S

Latency (s)
RN
=) o o

o
o

o
o
o

3 5 7 3
Maximum Deadline (s)

(a) Scheduled Tasks

5
Maximum Deadline (s)

(b) System Latency

ESICRATOS BZIIFCFS MEIFORESAM EENEFESTO ‘-l CRATOS =8=FCFS =% FORESAM =$=EFESTO

* — - =4 ==
10-2 -
225 -
g 3
820 s
E £
2 =
515 =
: &
s10
: 1074
° passsssanananns Wesssansnnanune]
T e
0
3 5 7 3 .

Maximum Deadline (s)

(d) CPU time measuring in the VEC
controllers

Maximum Deadline (s)

(c) Monetary Cost

Fig. 4. Simulation results for different deadlines.

Optimality allows the best task set to be scheduled in the same
VC with minimum processing time and deadline constraints.
Finally, Figure 4(d) presents the CPU usage time by the
VEC controllers that run the scheduling approaches. This
metric is directly related to the approach’s computational
complexity. Also, an approach that manages to schedule more
tasks has more overall CPU time, even with less computational
complexity. In all evaluations, FCFS has lower CPU time
because its selection method is simple, selecting the task to
be scheduled based on its order of arrival in the system,
operating with time complexity O(n?), where n is the total
number of tasks. CRATOS has the second-lowest CPU time,
but this can be justified by the number of tasks scheduled
and successfully executed, even having pseudo-polynomial
complexity (O(max{m} +n x W), where m is the set VC,
n is the number of tasks, and W is the size of the VC
considered in each round). FORESAM has a high CPU time
because it iteratively selects one task at a time given a VC,
making a more significant number of checks for each VC
considered in the round. FORESAM uses the AHP technique
in its decision process, and the time complexity of AHP
is O(min{mn?,m?n}), where m is alternatives, and n is
criteria. Finally, EFESTO has CPU time statistically close to
FORESAM. This is also true of its iterative decision-making
process. In certain rounds, the returned Pareto set may be
small, requiring further rounds to fill the VC. A 2-dimensional
set is constructed at each decision round, and the algorithm
searches for the Pareto optimal set, taking O(nlogn) time.

V. CONCLUSION

In this paper, we proposed a task scheduling mechanism
for VEC environments, using the Pareto optimality principle
to select the best task set to be scheduled in VCs. This
selection is based on contextual aspects, such as the processing
time and deadline of the tasks, as well as vehicle mobility
information to estimate the resources in each VC. Simulation
results show that EFESTO fulfills its objectives to maximize
the number of scheduled tasks while minimizing the total
processing time and monetary cost of using VEC resources.
Future works include machine learning techniques for mobility
prediction and resource estimation in each cloud. Also, we
intend measurement of network metrics about the maintenance
of knowledge by the VEC controllers.

ACKNOWLEDGMENTS

This work is supported by the grants #2015/24494-8,
#2018/16703-4, and #2021/13780-0 of the Sao Paulo Research
Foundation (FAPESP), and the National Council for Scientific
and Technological Development (CNPq).

REFERENCES

A. M. de Souza, H. F. Oliveira, Z. Zhao, T. Braun, A. A. Loureiro, and
L. A. Villas, “Enhancing sensing and decision-making of automated
driving systems with multi-access edge computing and machine learn-
ing,” IEEE Intelligent Transportation Systems Magazine, vol. 14, pp.
44-56, 2022.

R. Meneguette, R. De Grande, J. Ueyama, G. P. R. Filho, and E. Madeira,
“Vehicular edge computing: Architecture, resource management, secu-
rity, and challenges,” ACM Computing Surveys (CSUR), vol. 55, no. 1,
pp. 1-46, 2021.

Q. Luo, C. Li, T. Luan, and W. Shi, “Minimizing the delay and
cost of computation offloading for vehicular edge computing,” IEEE
Transactions on Services Computing, vol. 1374, pp. 1-12, 2021.

J. B. D. da Costa, R. I. Meneguette, D. Rosdrio, and L. A. Villas, “Com-
binatorial optimization-based task allocation mechanism for vehicular
clouds,” in IEEE 91st Vehicular Technology Conference (VIC Spring).
IEEE, 2020, pp. 1-5.

A. Boukerche and V. Soto, “Computation offloading and retrieval for
vehicular edge computing: Algorithms, models, and classification,” ACM
Computing Surveys (CSUR), vol. 53, no. 4, pp. 1-35, 2020.

X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task
scheduling for online vehicular edge computing,” IEEE Transactions on
Mobile Computing, pp. 1-14, 2020.

G. Hattab, S. Ucar, T. Higuchi, O. Altintas, F. Dressler, and D. Cabric,
“Optimized assignment of computational tasks in vehicular micro
clouds,” in 2nd International Workshop on Edge Systems, Analytics and
Networking (EdgeSys 2019). ACM, 2019, pp. 1-6.

R. Pereira, A. Boukerche, M. A. da Silva, L. H. Nakamura, H. Freitas,
G. P. Rocha Filho, and R. I. Meneguette, “Foresam—fog paradigm-based
resource allocation mechanism for vehicular clouds,” Sensors, vol. 21,
no. 15, p. 5028, 2021.

X. Wu, S. Zhao, R. Zhang, and L. Yang, “Mobility prediction-based joint
task assignment and resource allocation in vehicular fog computing,” in
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2020, pp. 1-6.

C. Li, B. Zhang, and X. Tian, “Throughput-optimal dynamic broadcast
for sinr-based multi-hop wireless networks with time-varying topology,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11 962—
11975, 2021.

Y. Zhang, M. Li, Y. Zhang, Z. Hu, Q. Sun, and B. Lu, “An enhanced
adaptive unscented kalman filter for vehicle state estimation,” IEEE
Transactions on Instrumentation and Measurement, 2022.

1. Sorkhoh, D. Ebrahimi, R. Atallah, and C. Assi, “Workload scheduling
in vehicular networks with edge cloud capabilities,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 9, pp. 8472-8486, 2019.

S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
17th international conference on data engineering. 1EEE, 2001, pp.
421-430.

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

