
Improving Fairness and Performance in Resource
Usage for Vehicular Edge Computing

Joahannes B. D. da Costa∗†, Allan M. de Souza∗, Wellington Lobato∗†, Denis Rosário‡,
Christoph Sommer†, Leandro Villas∗

∗University of Campinas (UNICAMP), Institute of Computing (IC), Brazil
†TU Dresden, Faculty of Computer Science, Germany

‡Federal University of Pará (UFPA), Department of Exact and Natural Sciences (ICEN), Brazil
{joahannes, allams, wellington, leandro}@lrc.ic.unicamp.br, denis@ufpa.br, https://cms-labs.org/people/sommer

Abstract—Vehicular Edge Computing (VEC) has emerged to
offer cloud computing services closer to vehicular users by
combining vehicles and edge computing nodes into Vehicular
Clouds (VCs). In this scenario, an intelligent task scheduler must
decide which VC will run which tasks, considering contextual
aspects like vehicular mobility and tasks’ requirements. This
is important to minimize both processing time and monetary
costs. However, such direct optimization can lead to unfairness
in resource usage, easily leading to (as we will show) decreased
performance. Towards this end, in this work, we propose FARID,
a task scheduling mechanism that considers contextual aspects of
its decision process and applies a probabilistic selection function
on VCs to balance the processing load and increase the fairness
in the use of vehicular resources. Compared to state-of-the-art
solutions, FARID has a higher level of fairness and can schedule
more tasks while minimizing monetary costs and system latency.

I. INTRODUCTION

Vehicular Edge Computing (VEC) emerged as a paradigm
to provide computing power and storage close to vehicular
users [1]. VEC allows applications with strict latency re-
quirements to be provided cloud computing services at lower
levels in the network hierarchy, thus mitigating problems such
as transmission delays, poor connection reliability, and high
bandwidth usage. For this purpose, VEC needs to aggregate
the resources and make them available on the network [2].

In this context, the computational resource aggregation
from vehicles and Base Stations (BSs) with computational
capabilities is known as Vehicular Cloud (VC) formation [3].
This process typically considers the vehicular mobility pattern
to group vehicles in coverage of a BS and, with this, can
maintain stable resource availability [4]. The utilization of
these aggregated computational resources, in turn, is referred
to as task scheduling [5]. This process is performed in real-time
and is designed to optimize the use of available resources while
ensuring that tasks are completed promptly and efficiently [6].

One of the main challenges of task scheduling in VCs is
the dynamic nature of the vehicular network, as vehicles move
and change their position, making it challenging to predict
resource availability in a specific location. To tackle this
challenge, advanced strategies are used to determine the best
task placement based on factors such as communication costs
and mobility prediction [2].

However, much less attention has been paid to questions
of fairness in resource usage in the scheduling process [7].
We treat this as an issue of load balancing among the nodes
processing tasks (vehicles and BSs), that is, distributing the
workload evenly across available computational resources [8].
Load balancing is performed either when a task arrives or once
it has already been queued [9]. It ensures that tasks are allocated
efficiently to prevent resource over or underutilization [10].
By balancing the load, the system can achieve better resource
utilization and response times. Additionally, load balancing can
help mitigate congestion and handle varying demand patterns,
resulting in a more efficient and effective task scheduling
process [4]. Therefore, another important challenge of VCs
is to meet user demands by maintaining fair load balancing
among available computational resource usage [7], [8] while
still considering node mobility in the scheduling process.

Towards this end, this work introduces FARID (FAir Re-
source usage in vehIcular clouDs). FARID runs on VEC
controllers and uses Pareto optimality to schedule tasks in
different VCs. The mechanism splits the set of tasks into
different parts to improve the system efficiency with parallel
management, obtaining k different Pareto sets and being able
to make k decisions at the same time, where k is the number
of threads running in each VEC controller. FARID aims to
minimize processing time within VCs, thus reducing resource
utilization and, subsequently, monetary costs. Also, it considers
contextual aspects in its decision process, such as resource
mobility in each VC and task’s requirements. We assessed
the efficiency of FARID compared to other mechanisms, and
the results indicate its capability to schedule a larger quantity
of tasks, minimize monetary costs, and reduce overall system
latency. Lastly, FARID employs better load balancing in the
scheduling process, resulting in greater fairness in the resource
usage of VCs.

In summary, the contributions of this work are:
• a task scheduling mechanism that maximizes the tasks

scheduled while maintaining a fair load balancing in the
use of computational resources;

• the use of multithreading for parallel resolution of schedul-
ing subproblems, aiming to reduce system latency; and

• the utilization of contextual information to aid in the
decision-making process.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

98th IEEE Vehicular Technology Conference (VTC2023-Fall)

II. RELATED WORK

Numerous studies have created diverse strategies to optimize
task scheduling in VEC systems. Also, some of these strategies
try to balance the scheduling load in the VCs. For instance,
Hattab et al. [11] introduced an optimized algorithm for
scheduling tasks in VCs with varied resources, which mainly
uses the First-Come, First-Served (FCFS) standard from the
literature. The algorithm classifies tasks by completion-to-
waiting time ratio, identifies those with the lowest ratio, and
uses Linear Programs to solve them. It aims to minimize task
completion time within VC’s resources, assuming a static VC
and focusing solely on a single VC. In this case, load balancing
is trivial, as there is only one VC for decision-making.

Some works consider Multi-Criteria Decision Making
(MCDM) methods for selecting the VC to perform the schedul-
ing process. Such MCDM methods tend to balance the selected
options to insert a load balance during the decision process.
Aligning with this approach, Mishra et al. [12] introduced two
Analytic Hierarchy Process (AHP)-based resource allocation
policies, named SECA and AHP-EV. Resource allocation
can also be defined as task scheduling, depending on the
scenario. The proposed schemes consider the network load
and compute load during decision-making, aiming to minimize
each task’s delay. These policies differ in assigning weights to
each criterion, but both have similar results. AHP-EV employs
pre-set weights for computing power and network, whereas
the SECA dynamically determines criteria weights.

Other works utilize multi-objective optimization methods for
the task selection process that will be scheduled. Da Costa et al.
[6] presented a task scheduling mechanism for VCs based on
Pareto optimality, named EFESTO. EFESTO employs vehicle
mobility information to estimate the resources available in each
VC, thereby enabling more precise decision-making. Moreover,
it uses Pareto optimality to select the optimal subset of tasks
for joint minimization of deadline and processing time, which
minimizes the monetary cost associated with resource usage.
However, EFESTO prioritizes the VCs with more available
resources without considering possible overloads that this
continuous selection can cause.

Similarly, Luo et al. [13] evaluated delay and cost impli-
cations associated with task scheduling in VCs. The study
established a scheduling framework that accommodates com-
munication and computation within VCs, considering tasks with
varied requirements. Consequently, a multi-objective problem
was designed to minimize both delay and cost. A Particle
Swarm Optimization-based scheduling algorithm was suggested
to derive Pareto-optimal solutions. However, due to the bio-
inspired nature of the approach, the convergence time could
impact the solution’s overall performance. Additionally, the
authors did not factor in vehicular mobility as a prerequisite
in the scheduling process.

Ribeiro et al. [14] introduced a metaheuristic approach that
models VCs as a coalition. In game theory, a coalition refers
to a group of players who agree to cooperate by combining
their strategies to enhance their joint payoff. In this context,

VC in region B VC in region AVC in region A vehicle

requestscheduling remote server

Xn interface

Fig. 1. A system architecture employed by FARID, presenting its main
components, such as vehicles, Base Stations (BSs), Remote Server (RS),
Vehicular Clouds (VCs), and Vehicular Edge Computing (VEC) Controllers.

the authors propose a coalition game to maximize resource
utilization while dynamically balancing the load among the
VCs. Firstly, the mechanism establishes a strategy based on
the Shapley value to determine the sequence in which tasks are
scheduled. After that, the mechanism uses a queue to schedule
tasks within VCs based on values calculated. Nonetheless,
the authors overlook the contextual factors in the scheduling
decision process. They do not consider the implications of
vehicular mobility and task deadline constraints.

Based on the state-of-the-art analysis, it is possible to observe
that these works mostly do not consider mobility information in
scheduling decision processes. Also, it is essential to consider
load balancing during the task scheduling decision process to
increase fairness in using resources and not overload specific
regions in the city, increasing its maintenance costs.

III. SYSTEM OVERVIEW

This section describes FARID, which considers Pareto
optimality and a probabilistic selection function to maximize
scheduled tasks, load balancing, and fairness in resource usage.

A. Network and System Model

Figure 1 presents the system architecture composed of
vehicles, BSs, VEC controllers, and a Remote Server (RS)
in the Internet. The scenario has a set of x vehicles, denoted
as ui ∈ U = {u1, u2, . . . , ux}. Also, there is a set of p BSs
deployed in the city, denoted as by ∈ B = {b1, b2, . . . , bp}.
Each BS can communicate with the RS via optical fiber link.

To improve the management of BSs, the city is divided into
R regions, and each region has at least one BS. Furthermore,
we consider a set of |R| VEC controllers, since each region
is managed by exactly one controller. Therefore, after the
association between the vehicle and BS, the BS sends this
information to the RS. The association process considers the
Max-SINR approach. BS information only is updated as the
number of vehicles in its coverage changes.

In the resource aggregation process (VC formation), the
VEC controller needs to request the RS about BSs and vehicles
information to build its regional knowledge [3]. In this way,
the system employs a Publish/Subscribe scheme to obtain the
relevant information without introducing unwanted traffic into
the network. The set of VCs can be denoted by vj ∈ V =
{v1, v2, . . . , vm}, where m is the total number of VCs. We
consider that the number of VCs is the same number of BSs,
as the positioning of the BS defines where the VC will act. In

summary, a VC consists of a set of vehicles and BS capable
of sharing processing power ω in Million of Instructions Per
Second (MIPS) and storage capacity ϕ in Megabytes (MB).
The total amount of processing power Ωj and storage capacity
Φj of each VC vj is the sum of the shared resources of vehicles
and BS that make up these VCs.

Due to VC’s resource variability over time, we utilize
accurate vehicular mobility data to determine each vehicle’s
stay within BSs’ coverage. Even though mobility prediction
is not the primary focus of this study, we employ an optimal
mobility prediction method. Future vehicle mobility data is
gathered from the vehicular dataset within a time window Z.
To simulate prediction errors, we introduce a white Gaussian
noise to each collected data [6]. Finally, as we now estimate
the available resources in the VCs at z ∈ Z time units, these
resources can be denoted by Ωjz and Φjz .

B. Problem Definition

Each task tl ∈ T = {t1, t2, . . . , tn} is denoted by a tuple
{idtl , s

t
l , w

t
l , D

t
l} where idtl represents the unique identification

number, stl denotes the input data size (in MB), wt
l is the

number of Central Processing Unit (CPU) cycles required
to process the task, and Dt

l is its deadline constraint. The
processing time dtlj (i.e., execution time of a task in a specific
computational configuration) can be obtained based on the
required CPU cycle wt

l divided by the server’s CPU cycle
frequency Ωj , as dtlj =

wt
l

Ωj
,∀tl ∈ vj .

As VC’s computational resources are shared among different
tasks, the Ωj considered for getting processing time for a given
task must be updated according to the degree of sharing of
this resource within the VC, represented by Ψj . Thus, Ωj is
divided by the number of tasks |T ′

j | that were scheduled in
this VC to yield Ψj =

Ωj

|T ′
j |
, j ∈ V .

Additionally, each task has a deadline constraint Dt
l . This

deadline represents a time limit that the task can wait to be
processed. If dtlj ≤ Dt

l , the task can be scheduled and executed
in the VC vj . Also, when a task is scheduled and starts to be
processed, there is a cost associated with this execution. The
monetary cost is modeled as

Cl = dtlj ∗ (wt
l ∗ResourcePrice(tl)). (1)

where dtlj is the tl processing time in vj ∈ V and wt
l

is its CPU cycles required. ResourcePrice(tl) indicates the
resource price used and is set to $14.309 (if tl uses BS’s
resources) or $6.27 (if tl uses vehicles’ resources). The prices
are based on instances available on Amazon EC2 1 (Region
Europe, Frankfurt), such as g4ad (BS) and g3 (vehicle).

In summary, when a task arrives in the system, it is queued
and waits until it is scheduled. The VEC controller must select
the VC to process this task. This selection decision should
consider the VC’s processing power over time and the task
requirements. So, to consider these different objectives, a task
scheduling problem was formulated that primarily seeks to

1https://aws.amazon.com/ec2/dedicated-hosts/pricing/

...
tasks queued

0 Scheduler

requests

VC #1

VC #2

VC #3

0

1 2

3

tasks scheduled tasks waiting

1

2

123 ƒ

load-balancing function

dispatcher

Fig. 2. The task scheduling pipeline with a load-balancing function integrated
into the scheduler approach.

maximize the number of tasks scheduled considering constraints
that directly impact the monetary costs, as follows:

maximize
n∑

l=1

tl, l ∈ T, (2)

subject to dtlj ≤ Dt
l , l ∈ S′, j ∈ V, (3)

n∑

l=1

stl ≤ Φjz, l ∈ S′, j ∈ V, z ∈ Z, (4)

n∑

l=1

wt
l ≤ Ψjz, l ∈ S′, j ∈ V, z ∈ Z. (5)

The constraint (3) guarantees that the task deadline is
respected and helps reduce the monetary cost, avoiding
rescheduling. Also, constraints (4) and (5) ensure that VCs’
storage and processing limits during the z required processing
time intervals are respected.

C. FARID’s operation

Figure 2 presents a simplified task scheduling process
pipeline in VCs. In summary, tasks are queued on the VEC
controller as soon as they arrive in the system (Label 1). In this
phase, the task can assume two states, waiting and scheduled. A
task can assume a scheduled state and return to a waiting state
if the VC fails to complete its processing and the task’s deadline
is Dt

l > 0. From that moment on, the task deadline must be
observed constantly since the task is waiting for the scheduler’s
decision. Based on its criteria, the scheduler decides which
VC the task will be processed. This scheduler can employ a
load-balancing strategy to increase fairness levels in utilizing
the VEC’s computational resources. A Dispatcher has the role
of distributing the tasks to the corresponding VCs (Label 2).
The task distribution ratio is stored by VEC controller for
load-balancing purposes in future decisions. Finally, the VCs
receives the tasks and starts processing (Label 3).

In this context, FARID seeks the Pareto set using a dual-
criteria approach: it simultaneously minimizes tasks’ processing
times and deadlines. A distinct vector is created for each
criterion (processing time and deadline), arranged in a 2-
dimensional plane to find the Pareto set. We can obtain a
Pareto set in 2-dimensional in polynomial time O(n log n) [6].
Besides, as the objective is to maximize the number of tasks
scheduled, we simplify our problem to an instance of the Bin
Covering Problem (BCP), which solves this issue [3].

Furthermore, FARID divides the task queue and set of VCs
into k parts to make the scheduling process more efficient. Now,
each k part is responsible for calculating a Pareto set and the
universe of available VCs is smaller for the BCP application.
FARID makes k decisions simultaneously. This division is
performed in the Dispatcher. The Dispatcher Function in
Algorithm 1 exemplifies this splitting process.

With the scheduling decision taken, carrying out a load
balance among the available VCs to increase fairness in
resource usage is essential. With this in mind, we consider a
selection probabilistic function when the scheduler needs to
select the VC in the scheduling process. After a VC is selected,
its selection probability decreases. Thus, when FARID selects
the VCs in the next round, an ordering of the probability vector
is performed, and the VC with the highest current probability
is selected. With that, after m rounds, all VCs are selected
at least once during the execution of FARID, where m is the
total number of VCs.

In summary, every VC has an original probability of being
selected during the scheduling process, according to

P 0
j , j = 1, 2, . . . ,m (6)

The selection probability is halved (0.5) if the VC is selected
in the current round. Otherwise, the previous probability is
maintained, according to Equation (7).

P z
j =

{
0.5 · P z−1

j , if item j was selected
P z−1
j , otherwise

(7)

To avoid the scenario that after a high number of rounds, the
probability of a VC is reduced to zero and it is never selected
again, a minimum nonzero probability is considered as

P z
j =

{
0.0001, if P z

j ≤ 0

P z
j , otherwise

(8)

Algorithm 1 describes the operations of FARID in a VEC
controller. The controller gets the VC set V , the task set T ,
and the number of threads k, which gives the S scheduled task
set as output. The Dispatcher Function splits the T and
V into k parts and starts the execution of the Scheduling
Function in parallel for each defined k (Lines 2 and 4). In the
Scheduling Function, the VCs’ probability vector is sorted
in descending order to select VC with the highest selection
probability (Line 6). For each v checked and selected, the
probability must be updated (Line 8). Two vectors are created
based on T , the first R for the estimated processing time,
and the second D for deadlines (Lines 9 and 10). FARID
calls the procedure PARETOSET with configuration for joint
minimization of vectors R and D (Line 11). The procedure
returns a set P containing the id of the tasks in the Pareto set.
After that, FARID runs BCP to select the best subset S′ ∈ P
that best fits in V (Line 12). Also, the total number of resources
needed for this returned set is calculated (Line 13). For each
task in the set S′, it is verified if the VC will have available
resources until its deadline Dt

l (Line 15). If not, that task is
removed from the set S′ (Line 16). If so, its actual processing

time is calculated (Line 19). If the processing time is longer
than its deadline, the task is removed from S′ and will be
rescheduled in the next round. Otherwise, set S′ is added to
the scheduled tasks list S (Line 23).

Algorithm 1: FARID
Input: task set T , VC set V , and number of threads k
Output: scheduled tasks set S

1 Function Dispatcher(T , V , k):
2 Split task set T into k parts
3 Split VC set V into k parts
4 Running Scheduling (Tk, Vk) for each thread k

5 Function Scheduling(T , V):
6 V ← descending order of selection probability
7 foreach v ∈ V do
8 Update v’s probability using Equation (7)
9 R← tasks’ processing time for v

10 D ← tasks’ deadline
11 P ← PARETOSET({R,D}, obj=[min,min])
12 S′ ← BINCOVERINGPROBLEM(P, v)
13 totalResources← Sum all resources in S′

14 foreach t′ ∈ S′ do
15 if totalResources < vj until Dt

l then
16 S′.remove(t′)
17 totalResources← totalResources− t′

18 else
19 dtlj ← As shown in Section III-B
20 if dtlj > Dt

l then
21 S′.remove(t′)

22 else
23 S ← S′

24 return S

IV. EVALUATION

This section describes the methodology and metrics used to
evaluate the efficiency of FARID.

A. Scenario description and Methodology

The experiments were carried out with the Simulation
of Urban MObility (SUMO) 1.16.0. The algorithms were
implemented in Python 3.8.10 and connected to SUMO through
the TraCI interface. We used a central sub-map of 114 km2

from TAPASCologne trace2, which reproduces vehicle traffic
in the city of Cologne, Germany. We consider 2 hours of
vehicular mobility and up to 700 vehicles. The simulation time
was 800 seconds, with 100 initial seconds of warm-up. We ran
the simulations 33 times to obtain a 95% confidence interval.

The Bag-of-Tasks (BoT) applications were considered since
they can be executed outside the arrival order. The tasks’ dead-
line varies between [0.5, 0.8), [0.8, 1.0], and (1.0, 3.0] seconds.

2https://sumo.dlr.de/docs/Data/Scenarios.html

[0.5, 0.8) [0.8, 1.0] (1.0, 3.0]
Deadline (s)

0
10
20
30
40
50
60
70
80
90

100

Sc
he

du
led

 T
as

ks
 (%

)

RANDOM AHP-EV EFESTO FARID

(a) Scheduled Tasks

[0.5, 0.8) [0.8, 1.0] (1.0, 3.0]
Deadline (s)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

La
ten

cy
 (s

)

RANDOM AHP-EV EFESTO FARID

(b) System Latency

[0.5, 0.8) [0.8, 1.0] (1.0, 3.0]
Deadline (s)

0

20

40

60

80

100

120

M
on

eta
ry

 C
os

t (
$)

RANDOM AHP-EV EFESTO FARID

(c) Monetary Cost

Fig. 3. Simulation results considering different deadline constraints.

This is important for generalizing different application classes.
VC formation intervals were 5 seconds. The arrival rate of
tasks λ is 5 tasks/second, following a Poisson distribution. The
communication ranges of vehicles and BSs were 250 and 2000
meters, respectively.

Furthermore, the size assigned to the tasks was stl = [1, 10]
(MB), and the CPU cycles required varying in wt

l = [1, 30]
Million of Instructions (MI). The number of CPU per vehicle
is 1, which without loss of generality represents 1 MIPS. Each
vehicle’s storage capacity has been simplified to 1 MB. 14
BSs were used, and each can share processing power equal 15
MIPS and storage capacity equal 15 MB. 4 VEC controllers
were considered, and each can manage up to 4 neighboring
BSs. The BSs deployment positions followed the information
provided by the TAPASCologne project.

We compared the performance of FARID with three ap-
proaches, namely: RANDOM, which combines a policy based
on First-Come, First-Served (FCFS) [11] with a randomized
policy to select VCs [15]; EFESTO [6], which uses Pareto
optimality in the task scheduling process and selects VCs with
more resources every round; and AHP-EV [12], which uses the
AHP multi-criteria approach in its decision-making process.

The metrics used for evaluation were: i) Scheduled Tasks
represent the percentage of tasks successfully completed; ii)
Monetary Cost refers to the resources usage price; iii) System
Latency refers to the processing time plus the queue waiting
time; and iv) Fairness represents Jain’s fairness index. This
metric is widely used to measure how fair the use of resources
is in a computational system.

B. Simulation Results

Figure 3(a) shows the percentage of successfully scheduled
and executed tasks. The performance of all approaches enhances
as the maximum deadline extends. This means that the
mechanisms have more time for decision-making and can
make more unsuccessful attempts until the deadline is reached.
FARID can schedule more tasks in all observed scenarios.
Also, our mechanism can schedule more than 98% of tasks in
configurations with less complex time constraints (maximum
deadline (1.0, 3.0]). The use of mobility information helps in

more accurate decisions, ensuring that the task will complete
its processing in the selected VC. EFESTO is the second
mechanism that can schedule more tasks. However, the fact
that it only considers one Pareto set can make the decision
process difficult, as possible better subsets are disregarded. The
AHP-EV reaches lower levels of scheduling, compared to the
two previous mechanisms, due to its decision strategy that
selects only one pair (task, VC) at each round. This approach
aims to integrate the criteria, which are the task requirements,
and select the best task for the current VC. RANDOM has the
worst performance in all scenarios. This is due to its decision
strategy, which is only concerned with the task’s size employed
by FCFS, disregarding fundamental aspects such as deadline
and processing time. Besides, the selection of VCs is carried
out at random to increase fairness in the use of resources. In
the most challenging configuration, with a maximum deadline
equal to [0.5, 0.8), FARID is still superior, but managing to
schedule only 61% of tasks.

Figure 3(b) shows the results regarding the system latency,
which includes queue waiting time and task processing time. In
this metric, the lower latency means the scheduling rounds are
more efficient. In all the evaluation scenarios, it can be observed
that FARID reduces the system latency. The best result is mainly
achieved due to the selection of VCs employed by FARID,
which minimizes the task processing time and the deadline
constraint jointly. Also, the use of k decision-makings at the
same time allows a smaller universe of tasks to be explored
and helps to reduce system latency. In this way, FARID can
handle a more significant number of tasks in a shorter time than
other approaches. Mobility information helps estimate future
resources, guaranteeing lower error rates in its scheduling
process. RANDOM has higher latency in all evaluations due
to its decision-making prioritizes the task size. EFESTO has
an advantage over AHP-EV in the least challenging scenario
(maximum deadline (1.0, 3.0]). In summary, FARID improved
resources management by incorporating contextual aspects of
tasks and VCs into its decision-making process.

Figure 3(c) shows the monetary cost of using the VCs’
computational resources. As the resource prices differ, as
discussed in Section III-B, the approaches prioritize vehicle

[0.5, 0.8) [0.8, 1.0] (1.0, 3.0]
Deadline (s)

0.0

0.2

0.4

0.6

0.8

1.0
Ja

in
's

fai
rn

es
s i

nd
ex

RANDOM AHP-EV EFESTO FARID

Fig. 4. Jain’s fairness index considering different deadline constraints.

resources to minimize the final monetary cost. It can be noted
that FARID minimizes the monetary cost in all evaluations
performed. The best performance of FARID is due to the
selection of tasks considering the future resources available
in the VC. Pareto optimality allows the best task set to be
scheduled in the same VC with minimum processing time
and deadline constraints. Furthermore, separating the queued
tasks into k parts makes the checks more efficient, and FARID
makes fewer errors during the scheduling decision. RANDOM
performs worse on this metric because its selection of VCs is
entirely random, which does not guarantee that the task will
be completed on the VC selected.

Finally, Figure 4 presents the fairness index obtained by
the approaches when selecting VCs for scheduling. FARID
obtains the best fairness index in all considered evaluation
scenarios. The probability-based VC selection function allows
all VCs to be selected during the scheduling process, thus
increasing the network’s ability to meet user demands (as seen
in Figure 3(a)). The RANDOM approach obtained the second-
best performance in this metric because it randomly selects
a VC each round. This way, the chance of all VCs being
selected increases significantly. However, it is crucial to view
these metrics holistically. It is not sufficient for a scheduling
approach to have a high fairness index if it can not satisfy even
15% of user demands in more complex scenarios. EFESTO
has the worst fairness index since it prioritizes VCs with more
resources in each scheduling round.

V. CONCLUSION

In this paper, we proposed a task scheduling mechanism
for Vehicular Edge Computing (VEC) environments, using
the Pareto optimality principle to select the best task set to
be scheduled in Vehicular Clouds (VCs). We combine Pareto
optimality with Bin Covering Problem (BCP) to find the most
suitable fit between tasks and VC resources. The task selection
is based on contextual aspects, such as the processing time
and task deadline. Besides, we consider vehicular mobility
information to estimate the resources in each VC. The proposed
approach also guarantees high levels of fairness in using
vehicular resources, applying a probability function for load

balancing on the selected VCs. Compared to state-of-the-
art solutions, FARID has a higher level of fairness and can
schedule more tasks while minimizing monetary costs and
system latency.

Future works include exploring other approaches to load
balancing and fairness. Also, we intend to evaluate network
metrics to get the maintenance/knowledge traffic in the VEC
controllers.

ACKNOWLEDGMENTS

This work is supported by the São Paulo Research Founda-
tion (FAPESP), grants #2018/16703-4 and #2019/19105-3.

REFERENCES

[1] J. Xue, Q. Wang, H. Zhang, N. An, and C. An, “Idle-parked vehicles
assisted collaborative resource allocation in VEC based on Stackelberg
game,” Ad Hoc Networks, vol. 142, p. 103 069, Apr. 2023.

[2] Y. Ju et al., “Joint Secure Offloading and Resource Allocation for
Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement
Learning Approach,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 5, pp. 5555–5569, May 2023.

[3] J. B. D. da Costa, A. M. de Souza, R. I. Meneguette, E. Cerqueira,
D. Rosário, C. Sommer, and L. Villas, “Mobility and Deadline-Aware
Task Scheduling Mechanism for Vehicular Edge Computing,” IEEE
Transactions on Intelligent Transportation Systems, 2023.

[4] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicular
Edge Computing Networks: A Load-Balancing Solution,” IEEE Trans-
actions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, Feb.
2020.

[5] N. Keshari, D. Singh, and A. K. Maurya, “A survey on Vehicular Fog
Computing: Current state-of-the-art and future directions,” Vehicular
Communications, vol. 38, p. 100 512, Dec. 2022.

[6] J. B. D. Da Costa, A. M. de Souza, D. Rosário, C. Sommer, and L. A.
Villas, “Efficient Pareto Optimality-based Task Scheduling for Vehicular
Edge Computing,” in IEEE 96th Vehicular Technology Conference
(VTC2022-Fall), IEEE, Sep. 2022.

[7] C. Chen, H. Li, H. Li, R. Fu, Y. Liu, and S. Wan, “Efficiency and
Fairness Oriented Dynamic Task Offloading in Internet of Vehicles,”
IEEE Transactions on Green Communications and Networking, vol. 6,
no. 3, pp. 1481–1493, Sep. 2022.

[8] K. Hejja, S. Berri, and H. Labiod, “Network slicing with load-
balancing for task offloading in vehicular edge computing,” Vehicular
Communications, vol. 34, p. 100 419, Apr. 2022.

[9] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy, “Efficient
scheduling policies for Microsecond-Scale tasks,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 1–18.

[10] M. H. Kashani and E. Mahdipour, “Load Balancing Algorithms in
Fog Computing: A Systematic Review,” IEEE Transactions on Services
Computing, vol. 16, no. 2, pp. 1505–1521, Mar. 2023.

[11] G. Hattab, S. Ucar, T. Higuchi, O. Altintas, F. Dressler, and D. Cabric,
“Optimized Assignment of Computational Tasks in Vehicular Micro
Clouds,” in 2nd International Workshop on Edge Systems, Analytics and
Networking (EdgeSys 2019), ACM, Mar. 2019.

[12] S. Mishra, M. N. Sahoo, S. Bakshi, and J. J. P. C. Rodrigues, “Dynamic
Resource Allocation in Fog-Cloud Hybrid Systems Using Multicriteria
AHP Techniques,” IEEE Internet of Things Journal, vol. 7, no. 9,
pp. 8993–9000, Sep. 2020.

[13] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Minimizing the Delay and
Cost of Computation Offloading for Vehicular Edge Computing,” IEEE
Transactions on Services Computing, vol. 15, no. 5, pp. 2897–2909, Sep.
2022.

[14] A. Ribeiro, G. P. Rocha Filho, D. L. Guidoni, R. E. de Grande,
S. Sampaio, and R. I. Meneguette, “A Shapley Value-based Strategy for
Resource Allocation in Vehicular Clouds,” in IEEE Global Communica-
tions Conference (GLOBECOM 2022), IEEE, Dec. 2022, pp. 5801–5806.

[15] R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia, “Randomized
Load Balancing under Loosely Correlated State Information in Fog
Computing,” in 23rd International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ACM, Nov.
2020, pp. 123–127.

