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ABSTRACT
As technology advances, Unmanned Aerial Vehicles (UAVs) have
emerged as an innovative solution to a variety of problems in many
fields. Automated control of UAVs is most common in large area
operations, but they may also increase the versatility of smart home
compositions by acting as a physical helper. For example, a voice-
controlled UAV could act as an intelligent aerial assistant that can
be seamlessly integrated into smart home systems. In this paper, we
present a novel Augmented Reality (AR)-based UAV control that
provides high-level control over a UAV by automating common
UAV missions. In our work, we enable users to operate a small
UAV hands-free using only a small set of voice commands. To help
users identify the targets, and to understand the UAV’s intentions,
targets within the user’s field of vision are highlighted in an AR
interface.We evaluate our approach in a user study (n=26) regarding
usability, physical and mental demand, as well as a focus on the
users’ preferences. Our study showed that the use of the proposed
control was not only accepted, but some users stated that they
would use such a system at home to help with some tasks at home.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality;
Usability testing; Sound-based input / output.
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1 INTRODUCTION
The idea of having intelligent assistants has long been a fascinating
topic among people. For personal applications, these assistants
can be used, for example, to control various Internet of Things
(IoT) devices. In this manner, these devices can be programmed
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to work together and create a smart home [16]. There are many
devices of this kind, such as switches, lamps, ovens, fridges, and
smartphones. For instance, one can program switches or light bulbs
to turn on the light when the user enters the room. A person is also
able to program their oven with a smartphone and receive push
notifications when it is preheated or when the meal is ready. These
are just a few applications of what can be done.

The use of Conversational User Interfaces (CUIs) [35] or the
Conversational Agents (CAs) [31] enables electronic agents to in-
teract with an existing smart home remotely. Amazon Alexa, Apple
Siri, and Google Assistant are prominent examples of such artificial
intelligent agents. Typically, these interactions with smart homes
are basic and do not automate workflows, but they do have an
immediate purpose and often affect fixed devices like ovens, audio
systems, or switches.

UAVs are one type of device that is rarely utilized in the context
of IoT, smart homes, or CUI. Recent developments in the field of
Human-Drone Interaction (HDI) have led to a wide range of use
cases and application domains for UAV. A recent survey [17] shows
that UAVs are being used in various domains, ranging from pro-
fessional environments [24] to leisurely activities [7]. Here, UAVs
can be operated either by an individual [30] or semi- or fully au-
tonomous ([5], [22]), and can interact with users [8] or bystanders
[36] alike.

The use and interaction of UAVs as personal aides in close prox-
imity to humans remain understudied, warranting further inves-
tigation in scientific domains, such as Help/Assistance and Com-
panionship as pointed out by the survey [17]. Historically, most
UAVs have been relatively large and cumbersome, posing a danger
to operators when they lose control. Currently, UAVs are available
that are compact and stable enough to minimize the risk to users,
which, in turn, reduces the required control distance.

In most professional use cases, UAVs are either controlled by a
base station or operate autonomously while maintaining a distance
from humans. Therefore, direct human interactions and influences
are generally minimal. In contrast, for personal use, most UAVs
are manually operated. Mastering standard UAV controls for most
tasks require training, a general affinity for technology, and fine
motor skills. However, this is less relevant in the described home
IoT scenario, where the focus is on automating or simplifying work-
flows.

Automated UAVs could serve as small helpers to monitor and
physically interact with the environment, such as delivering small
items. They could exceed typical IoT capabilities, as IoT commands
typically don’t require real-life physical interaction. Although it’s
possible to lock, open, or close a door, these actions can be sim-
plified to on/off commands for the door’s actuators. The ability
to command a physical moving body, such as a robot or a UAV,
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would offer more diversity. Similar to the robot Amazon is currently
developing1, it could move around the house, record, and stream
using its cameras, and serve as a motion sensor to enhance security
at night.

Detecting and transporting small objects could be the most ad-
vantageous feature. Avoiding human errors would require a UAV
that not only ensures the safety of users in case of failures but also
relies on highly automated control. It is worth noting that more
automation implies less control and more unknown internal pro-
cesses. Moreover, if people do not comprehend what is happening,
they feel insecure. This could also increase the UAV’s fear due to
fast-moving parts and uncertain movements.

One way to alleviate these fears is by providing safety measures,
such as using drone cages or safety glasses. It is also important
to consider the controls themselves. The controls should be in-
tuitive and straightforward. UAVs and their control systems are
widely discussed in current technological developments. For in-
stance, Konstantoudakis et al. [25] conducted a study comparing
different gesture controls. Erat et al. [12] developed an AR enhance-
ment to control UAVs and explored hidden areas, while Huang et
al. [20] propose a voice-based UAV control utilizing a full language
model.

In this paper, we focus on the research of voice-controlled UAVs,
which could act as a personal helper in smart homes in the future.
We propose a prototype UAV control that focuses on semi-automatic
target calculation, utilizing an AR head-mounted display for visual
aids and providing an easy selection of flight destinations through
voice commands. Since it does not require any prior UAV knowl-
edge or fine motor skills, it makes UAV control more accessible
and applicable in smart homes. The paper also addresses the is-
sue of general fear of UAVs, particularly at close range, for this
use case. The proposed control’s ease of use should help establish
the foundation for integrating UAV into smart homes as personal
helpers.

We evaluate the efficacy of the proposed UAV control based
on how well lay users can understand basic target detection and
position calculation, and how likely they are to use a UAV assistant
at home if one were available. To be more specific, our study aims
to ascertain if lay users can use a UAV with the provided features
in a satisfactory manner in an IoT environment. Various metrics
like usability, physical or mental demand, and user preference are
utilized to evaluate the usability of the proposed UAV control.

2 RELATEDWORK
As the popularity of IoT and smart homes increases, potential tech-
nologies that can be integrated are being researched. The following
sections discuss the literature on smart home applications, CAs,
and UAV interactions, in that order.

2.1 Augmented Reality
Augmented reality is a technology that enhances reality with optical
effects for various purposes. Various AR technologies exist, employ-
ing diverse techniques and immersion levels. The technology used
in our work is the Microsoft HoloLens 2, a head-mounted display
with see-through glasses. These glasses can project stereoscopic
1https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB

images to create three-dimensional objects in the real world. The
HoloLens 2 can track its position and orientation, making it possible
to create anchored holograms in the real world. The HoloLens 2,
with its form of augmented reality, is applied in various fields, such
as electrical engineering [43], and can also be utilized for computer
vision [44]. In cases such as surgeries [39], the possibility to place
and interact with stable holograms while keeping the hands sterile
enhances the information flow significantly.

The HoloLens 2 is not yet widely adopted for personal use due to
its relatively high cost. Nevertheless, technological advancements
may make it more affordable, thus opening up possibilities for
meaningful use cases such as smart home integration.

2.2 Smart Home Applications
Recently, there has been a growing interest in smart home applica-
tions, as demonstrated by the increasing number of research and
survey papers published, such as those by Stojkoska et al. [42],
Gunge et al. [15], and Marikyan et al. [33].

De Silva et al. [10] also conducted a review of state-of-the-art
smart home technologies, with a particular emphasis on audio and
vision-based techniques. For instance, one of the papers reviewed in
their study used computer vision to recognize human actions such
as falling, walking, or standing [9]. When used in combination with
audio-based systems, it is possible to recognize other activities such
as coughing and closing a door. Both systems operate as sensors
that identify specific situations, allowing them to respond to these
situations. They are not intended for active control.

Overall, there has been very limited research regarding the inte-
gration of UAVs into a smart home environment. For instance Xia
et al. [47] furnish a brief demonstration of UAVs in smart homes.
Hence, this paper aims to establish the fundamental principles for
the integration of UAVs into smart homes by providing a suitable
drone command strategy. As a general trend, smart home environ-
ments frequently support the use of CAs to interact with the users
and integrated devices.

2.3 Conversational Agent
According to a literature review by Mariani et al. [32], the use of
conversational agents in smart homes has substantially increased.

Diederich et al. [11] conducted an extensive review that analyzed
different interactions with conversational agents, including enhanc-
ing user request efficiency and exploring the role of conversational
agents as car assistants [13, 28].

Moreover, the review placed focus on studies that examined
automation in organizational processes, including customer ser-
vice [1] and sales [45].While all thementioned conversational agent
applications aim to automate or speed up processes, they can only
provide digital actions. In contrast, we provide the groundwork for
a mobile UAV conversational agent that can fly around and, in the
future, interact with the environment.

Sciuto et al. [41] conducted another study on CAs for personal
benefits. The authors studied how Amazon’s conversational agent,
Alexa, is implemented and utilized within households. They discov-
ered that the most typical commands for Alexa are basic, such as
’Alexa, what time is it?’, ’Alexa, what’s the weather like?’, ’Alexa, tell
me a joke’, or ’Alexa, turn on my light.’ These interactions ease the
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user’s workload but are restricted to the devices integrated into the
smart home system. For example, Alexa is unable to control a light-
bulb or switch that is not linked to the smart home network. UAV
helpers can extend applications by interacting with non-connected
items, despite their small size. Future versions could turn on lights
by physically pressing a button, without requiring a connection to
the bulb or switch. Only the location is important, and it can be
effortlessly detected using the presented setup. However, operating
and commanding a UAV is not always an easy task to learn or do.

2.4 UAV Interaction
In general, there are various interventions involving UAVs with
advantages and disadvantages for the user or the UAV’s versatility.
Herdel et al. [17] provide a recent survey that reviews and classifies
UAV research and UAV application domains.

Recently, research has focused on tangible human-UAV inter-
actions. In their study, Huang et al. [20] suggested utilizing voice-
controlled commands for navigating a UAV within a grid-based
environment measuring 4x4x2. It employs a language solver to
understand more complex sentences instead of basic commands.
To interpret complex sentences rather than mere instructions, a
natural language processing (NLP) algorithm is employed. Thus,
users can control the UAV with their own vernacular without the
need for memorizing specific instructions. Nevertheless, the UAV’s
capabilities are limited despite these advancements in control tech-
nology. The UAV can only operate in a confined space that includes
thirty-two possible positions defined as 4x4x2. This approach is not
suitable for a household where objects and targets can vary and
are not consistently uniform. Unlike a grid-based system, the UAV
control presented here operates independently. The UAV can reach
any detectable object within its range.

In their research, Erat et al. [12] use Microsoft’s HoloLens to ma-
neuver a UAV while Line Of Sight (LOS) is obstructed by obstacles,
such as walls. They study how effectively users can manipulate a
UAV even when the line of sight is obstructed. To do so, they com-
pare three distinct control systems. In the initial control strategy, a
joypad is employed to control the steering of the UAV, which itself
is not visible. Instead, a live feed from the UAV and an up-to-date
3D visualization of the UAV’s position within the room, along with
its interiors, is displayed on the monitor screen in real-time. The
second control named pick and place uses gestures to move a virtual
representation of a UAV. The real UAV follows the movement after-
ward while avoiding obstacles. To enhance the control the virtual
walls of the obstructed room are displayed in AR on a HoloLens.
The third control is similar to the second, but the UAV’s movement
uses gaze as direction determination.

Another AR-based approach was done by Konstantoudakis et
al.[25]. They present a UAV tracking system that combines visual
detection with cumulative Inertia Measurement Unit (IMU) data to
estimate the UAV’s position. They have implemented two gesture-
based UAV controls. For both, they used a HoloLens 2 headset for
AR-enhanced feedback and gesture-tracking purposes. The first
control is palm-based where a UAV is controlled by adjusting one’s
palm orientation. For example, the UAV is commanded to fly straight
ahead by tilting the hand forward and back by tilting it backward.

The second control is similar to gesture-based but does not consider
the palm orientation andmovement but rather the finger movement.

Although Erat et al. [12] and Konstantoudakis et al.[25] enhance
their UAV interactions with augmented reality, they stay with a
manual UAV control, resulting in an immediate low-level UAV re-
sponse for each user action. In contrast, UAVs in our work are
controlled on a high level, meaning it is sufficient to select a target
while other tasks like path calculation are done automatically.

Peining et al. [37] present a more exotic approach to interact with
UAVs using a hands-free approach that is based on Brain-Computer
Interface (BCI) data. They compare an Emotiv Insight and a Muse
2014 EEG headset for their accuracy and usability for controlling a
small UAV based on brain activity. Besides the LOS, no additional
enhancements are given. Since the controls with such EEG headsets
accept only concentration and relaxation as inputs, they are limited
to one-dimensional actions, and therefore only a very rudimentary
UAV control can be created.

There are also other UAV controls, which are not intended for
smart home applications directly, but for smart cities, smart agricul-
ture, and others. They are created for the same purpose, simplifying
and automating workflows. For example, UAVs are used in agri-
culture to measure soil pollution [21], monitor vineyards [40], or
detect stinted growths [19]. Some UAVs also utilize deep learning
on images to detect objects [6], avoid obstacles in indoor races [23],
or early detect sinkholes using thermal cameras [29]. However,
most of them use image processing to either find objects in the
images or avoid obstacles. None of them deal with UAV controls
that actually use the resulting information to define targets the
UAV should fly to. Furthermore, there is research where UAVs can
automatically detect targets even with spatial mapping. Bergé et
al. [3] present a point cloud-based spatial room scanning method
for UAVs to detect possible targets and Boudjit et al. [4] researched
target detection with QR-codes. However, none of them researched
how those target detection results can be utilized to develop an
actual UAV control that is intuitive and may be usable in a smart
home like the prototype presented in this work.

3 CONCEPT AND IMPLEMENTATION
In this section, we first provide an overview of the solution, de-
scribing the general workflow. Subsequently, we delve into a more
detailed explanation of the implementation and the workings of
the UAV control.

3.1 Solution Overview
The overall aim of the prototype designed here is to simplify the
control of a UAV such that it can be used by users not used to
control UAVs. Therefore, the control itself is reduced to voice com-
mands to instruct the UAV to valid targets. Valid targets are hereby
calculated and highlighted with the aid of Microsoft’s HoloLens 2.
The highlighting of targets is expected to increase transparency to
the user by helping to understand where and how the UAV will fly.

We have chosen a Crazyflie 2 [14] equipped with a lighthouse
positioning deck as a UAV. The lighthouse deck is essential because
it provides a stable coordinate system given being in the range
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 Base Scenario: Target object lies on the table. 
 Drone rests at its starting position  

User User

 Step 1: Find the target object  Step 2: While wearing the AR headset scan the 
 target object with voice command "Scan"

User

 Step 3:Wait for the detection feedback  Step 4: Go back and say voice command "Fly to   
 object" (Replace "object" with the object's name)  

User

 Step 5: Watch the drone flying to the target and 
 then returning back

User

Found
"Remote"

User

"Fly to
remote"

"Success sound"

"Remote" "Remote"

Figure 1: Example use case scenario for an intelligent aerial assistant. The manual scanning step may be removed in the future
for even more automation.

of SteamVR Base Stations 2.02 and therefore can accept precise
position commands.

The general workflow is as follows. The calculation of target co-
ordinates is done by utilizing a HoloLens 2 with its spatial mapping
functionality. It creates a wireframe environment model and thus
a 3D model of the surroundings including a stationary coordinate
system. With photos made by the HoloLens, the position where
they were made, an object detection algorithm, and the environ-
ment model it is possible to track the virtual positions of actual
objects. When the coordinate systems of the HoloLens and the UAV
are synced, and the UAV is commanded to such a virtual object
position, the UAV will automatically approach the real object. Users
can do this by voice commanding the UAV to the object that ini-
tiated the position calculation. An illustration of the scenario is
shown in Figure 1. Users can scan objects by watching them and
invoking the scan command. Afterward, the field of view of the user
is scanned for objects. When one is found it is highlighted in AR.
This procedure allows as many objects to be highlighted and flown
to as found in the scanned image as long as the object is visible to
the cloud detection algorithm. Finally, the user can command the
UAV to approach a target by saying fly to object, where object is
replaced by the actual name of the target found.

3.2 Implementation
Beginning, with the engine, Unity3 was chosen to run on the
HoloLens 2 for the calculations, and Python ZeroMQ [18] was used
on a notebook acting as a server for the communications between
the UAV and the HoloLens 2. Therefore the setup consists of the
HoloLens 2 (in the following called just HoloLens), a server running
on a notebook or workstation, and the UAV as the main compo-
nents. In the following the main workflow and implementation
concepts are explained in more detail.

2https://www.vive.com/us/support/vive-pro/category_howto/about-the-base-
stations.html (Accessed: 21.06.2023)
3Unity Repo: https://github.com/AnonymousGit2/UAV_Assistant_

3.2.1 Foundations. At the start, without needing any user input,
the HoloLens makes an automatic spatial mapping of the room
without any notations of where which object. As a result, a 3D
model of the environment is made which then can be used as
the foundation of the subsequent interactions and calculations. To
make an object known to HoloLens, it has to be scanned with the
built-in camera. In the following, a more detailed description of the
workflow for obtaining the 3D coordinates of the target object from
a single HoloLens photo is explained. For better comprehension, the
different steps explained in this chapter are also shown in Figure 2.

3.2.2 Scan Workflow. The Scan Workflow starts with the Scan (1)
command, which forces the HoloLens to take a photo (2). When the
HoloLens takes any photo, a PhotoCapture (3) object is created, con-
taining, amongst others, the image Texture (4) and a CameraMatrix
(5). The CameraMatrix (5) contains the camera’s position and projec-
tion matrix; both are important for further calculations. The image
Texture (4) is sent to a cloud vision service (6) to detect the objects
in the photo. For our prototype, we have chosen Google’s cloud
vision service but in general any other with object detection would
also work. After the image was sent, the service returns the names
of the objects found and their bounding boxes (7). The bounding
boxes are returned in the form of four coordinates describing the
corners of the rectangle. The coordinates given are always relative
percentages with their origin in the top left corner. In parallel to
the action above, the Unity application calculates a BlendedImage
(8). A BlendedImage (8) is a spatially static picture hologram that,
when viewed from the position it was taken, is indistinguishable
from the actual environment behind it and therefore blends with its
surroundings, and therefore, the real object is directly behind the
object in the BlendedImage (8). Such a BlendedImage (8) is calculated
using the camera position and the projection matrix, which were
both saved when the photo was captured.

Based on the position where the photo was taken and the spatial
mapping of the real world it can be used to calculate the positions
of real objects as illustrated in Figure 4.
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 Main Logic

TakePhoto (2) PhotoCapture (3) Texture (4)

CameraMatrix (5)

BlendedImage (8)

Names and 2D
image positions (7) Names and 3D image

positions (9) TargetedRaycast (10)

TargetManager (11)

DroneCommand
Server (13)

 

 Scan (1)

FlyToObject (12)

return target  
position

Scan invoked

FlyToObject  
invoked

request target 
position

Google Cloud 
Vision (6)

request 
Object_Localization

creates

starting 
position

save

used to  
calculateused to  

calculate

Note: 

Raycast from CameraMatrix.position in direction of the 3D image
position. 
The hit position with the spatial mesh of the HoloLens represents
also the 3D coordinate of the real object.

save name and 
 the real object's position

target position

queue commands

returns

save

Figure 2: Workflow from giving speech inputs to the UAV approaching the chosen destination.

The mapping shows that the extended line from the position
the photo was taken through the blended image would hit the real
object at exactly the same position and with the spatial mapping
provided by the HoloLens exactly this is possible. Here raycast can
be cast from the position the photo was taken in direction of the
object’s position in the blended image to hit the spatial model at
the position of the real object. This position can then be used to
augment the real object or to directly command the UAV to fly to
that position.

What remains is to calculate the direction of the raycast used in
3D space. Since raycasts need 3D coordinates, but pictures are only
in a 2D space, the coordinates of the found objects in the image
need to be transformed first (9).

A schematic transformation of the relative 2D image coordinates
into 3D Unity coordinates can be seen in Figure 3.

Here the blue Arrow is calculated as follows:

(1) The values image width, image height, and the image posi-
tion -in the following called 𝑣𝑜𝑟𝑖𝑔𝑖𝑛- as well as the image
orientation are given in Unity.

(2) Now start with the image position vector 𝑣𝑜𝑟𝑖𝑔𝑖𝑛 .
(3) Calculate the normalized vector direction along the x-axis of

the picture in 3D space 𝑣𝑥𝑛𝑜𝑟𝑚 utilizing the image position
and the image orientation.

(4) Calculate the needed length by multiplying the x-value of
the target position with the image width 𝑤𝑖 . Together with
the normalized direction 𝑣𝑥𝑛𝑜𝑟𝑚 , it results in the 3D vector
𝑣𝑥 = 𝑣𝑥𝑛𝑜𝑟𝑚 ·𝑤𝑖 · 0.75.

(5) Calculate the normalized vector direction along the y-axis of
the picture in 3D space 𝑣𝑦𝑛𝑜𝑟𝑚 utilizing the image position
and the image orientation.

(6) Calculate the needed length by multiplying the y-value of
the target position with the image height ℎ𝑖 . Together with
the normalized direction 𝑣𝑦𝑛𝑜𝑟𝑚 , it results in the 3D vector
𝑣𝑦 = 𝑣𝑦𝑛𝑜𝑟𝑚 · ℎ𝑖 · 0.25.

(7) By adding the three vectors the final vector 𝑣𝑝𝑜𝑠 = 𝑣𝑜𝑟𝑖𝑔𝑖𝑛 +
𝑣𝑥 + 𝑣𝑦 is derived. It is only correct for that image, and only
as long it is not moved or rotated after the calculation. For

x
y

z

image
position

image width  

image
height 

 
target position

Figure 3: Illustration on how 3D coordinates can be extracted
from 2D image coordinates in Unity

each additional image or position, the procedure has to be
repeated.

During the application execution, the BlendedImage is made
invisible since it is only essential for the calculations and not for
the users to see.

Since the resulting coordinate can be used to instantiate the
raycast (10) and thus to get the position of the actual object it
is now possible to calculate and save the actual positions of all
photographed objects which the cloud algorithm can recognize to
the TargetManager (11). The TargetManager (11) acts as a Database
where the positions of all found objects are stored and updated.
By converting that position from the coordinate system of the
HoloLens to the one of the UAV it is possible to calculate positions
the UAV can understand and therefore approach. It then remains
to command the UAV to that position.

3.2.3 Commanding the UAV. Afterward, the UAV can be instructed
with the FlyToObject (12) command where the phrase Object can
be replaced by any of the found objects. The DroneCommandServer
(13) will then request the current position of the defined object from
the TargetManager (11), calculate a primitive path to that position,
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blended
image

real
object

position the photo was taken

Figure 4: Workflow of generating the final target positions
from the 3D image coordinate calculated before

and finally queue the resulting positions commands to the UAV. In
our current version, obstacles are not avoided, as the UAV does not
have the measurements to do so. However, obstacle avoidance for
UAVs is already implemented by other researchers like Woods et
al. [46] or McGuire et al. [34].

In the following, the field usage of the described calculation is
illustrated. To fly the UAV to a target position, users have to walk
to the target, look at it and say scan. The HoloLens automatically
scans the object and then augments the users’ vision with an object
marker at the position of the real object. Figure 5 shows the resulting
marker from the scan operation.

Next to the marker, a tooltip showing the object’s name is also
presented to the users. In the case of the figure, it reads "Command
to fly here: ’Fly to Computerkeyboad’" as the computer keyboard
was the name of the object returned by the cloud vision algorithm.
With the tooltip, users can directly see the command that lets the
UAV fly to that object. To finish the task, it remains to command
the UAV with the voice command Fly to Object, where the actual
object’s name replaces the object phrase. In the case of Figure 5,
this command is Fly to Computerkeyboard. Then the flight path
is calculated, sent to the server, and ultimately to the UAV. The
UAV then flies along the calculated path and returns to the starting
position afterward.

4 EVALUATION
We conducted a user study to evaluate the proposed UAV control
system.

4.1 Hypothesis
This study’s objective is to evaluate whether everyday users can
adequately operate a UAV in an IoT environment, along with their
readiness to embrace and utilize it. In order to accomplish this, we
investigate the following hypotheses.

Our first hypothesis states that the UAV’s control system is highly
usable and automated, leading to a high SystemUsability Scale (SUS)
score.

Our second hypothesis examines whether the workload involved
in operating the UAV is low, indicated by the combined NASA Task
Load Index (TLX) score, along with individual scores related to
physical and mental demands.

Our third hypothesis predicts that the UAV’s small size will
alleviate any concerns or fears among users, encouraging them to
use it in real-life situations.

4.2 Procedure
We began by welcoming the participants and providing them with
an overview of the topic, as well as explaining safety measures
and data privacy. This introductory phase lasted about 15 minutes.
Following that, we provided the participants with roughly 10 min-
utes to answer some basic questions about themselves. Next, they
were given a brief amount of time to prepare by solving the tutorial
we provided. The tutorial was focused on the use of augmented
reality (AR) to provide an explanation of how things would work.
Following the tutorial, the participants were required to complete
the main task.

The primary objective was to fly the UAV to a designated target
and then return to the starting position. Users had to identify the
targeted object and learn the necessary procedures to pilot the UAV
to the objective. The tasks were not specific for the target object
and could have been replaced by any other object.

However, since the proposed voice control relies on scanning
and detecting an object, it is crucial that the detection algorithm
can recognize that object. Changing the objective introduces the
problem of various tracking accuracies of different objects. While
the cloud algorithm can detect many objects, some are difficult to
determine based on their general appearance alone.

The target object remained the same during the experiments be-
cause the ease of detecting it directly impacts its usability and men-
tal demand, which rely on the cloud vision service rather than the
control strategy. This ensured that all users had the same conditions.
It was assumed that even if the target differed among participants —
whether they had to guide the UAV towards a pen or remote control
— their usability and workload would remain unchanged. (System
Usability Scale) (SUS) and TLX questionnaires were distributed to
participants upon task completion.

4.3 Participants
Our study involved 26 participants, ranging in age from 22 to 32
years, with 6 women and 20 men included. Of these participants, 23
were pursuing bachelor’s or master’s degrees in computer science,
while the remaining three were studying media studies, taxation,
and philosophy. Given the predominance of computer science stu-
dents, the participants generally displayed a notable inclination
towards technical matters. Specifically, 18 participants rated their
technical affinity as high, four as very high, and four as average,
with no one indicating low or very low affinity.

When we asked people about their experience with augmented
reality (AR), we found that most of them were familiar with us-
ing AR on smartphones, while their experience with AR on Head
Mounted Displays (HMDs) was relatively limited. Taking into ac-
count the proficiency of the participants with smartphone-based
AR, 12 rated themselves as high or better, five as average, and nine
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Figure 5: Illustration of the highlighting of targets done in
augmented reality. After using the command Fly to Comput-
erkeyboard, the UAV approaches the target according to the
calculated path.

as low or less. Regarding HMD-based AR, 6 participants rated them-
selves high or better, six as average, and 14 low or less.

Similarly, participants were asked to state their experience in
controlling unmanned aerial vehicles (UAVs). Only two participants
rated their UAV control experience as high or better, while two rated
it as average. The remaining 22 participants reported low or lesser,
indicating limited familiarity with controlling UAVs.

The last demographic question asked to the participants was if
they fear UAVs at close distances. The question had four possible
answers, not at all, depends, kind of, and yes. If depends was selected,
then to get more insights, it was also asked on what it depends.
Of the 26 participants, four were kind of afraid of UAVs, and eight
selected depends. Most of the reasons for the depends answer were
about the size of the UAV and whether a protective eyeglass is
worn.

So the people stated felt safe if the UAV was small and safety
glasses were available. Even though the experiments were designed
utilizing a small UAV compared to other state-of-the-art ones, and
the participants had to wear safety glasses, it was expected that
they felt safe enough not to influence the outcome negatively.

4.4 Results
After the study was conducted, we evaluated the results based on
the given SUS- and TLX- values that are presented in the following.

A typical SUS questionnaire consists of ten statements on us-
ability. Users have the choice to mark one number ranging from
0, for strongly disagree to 5, for strongly agree. After collecting
the data, the score was scaled and averaged over all participants.
We calculated the mean SUS score of the UAV control with a value
of 85.9. Bangor et al.[2] created an adjective rating to interpret
these values, and according to that rating, this score is excellent
and therefore the second-best option.

The other measure we investigated was the NASA TLX. It resem-
bles the cognitive and physical demands of the participants during
the conducted study. Like the SUS score, the values of the TLX are

also classified as a Likert scale. Unlike the SUS score, lower TLX
values indicate a better result. Higher values show therefore higher
physical and mental workload. Users could here choose an answer
between 0 and 20 stating the amount of workload they had. After
scaling, the highest score possible is 100 and the lowest score is 0.
For our prototype, the average TLX value lies at 20.83. According to
the scale discussed by Prabaswari et al. [38], it resembles a medium
general workload.

To gain further insight, the first two questions of the TLX ques-
tionnaire are evaluated separately with the objective of directly
analyzing the perceived physical and mental demands. The physical
demand score had an average of 17.12 and the mental demand an
average of 31.06. Therefore, the physical demand is rated medium,
and the mental demand was rated high. We suspect that the latter
is caused by the short distances to the UAVs, but further research is
needed to understand exactly how this affects the mental demands
of the users. The lower physical load can likely be explained by
the limited need for physical movements, whereas the heightened
cognitive load may be due to the novice experience and proximate
interactions with UAVs. However, further empirical research is
needed to definitively assess the reason for the high mental de-
mand.

4.5 Qualitative Results
In evaluating the results, it is imperative to consider not only the
quantifiable metrics of usability and workload but also the subjec-
tive responses and reflections from the participants. Consequently,
to capture these nuances, two supplementary questionnaires were
administered post-study.

Feature Comparison. We used a first questionnaire to compare
different features of the UAV control. It included the following
questions (possible keyword answers are underlined):

• In general, would you prefer augmented reality enhanced
vision during UAV flights, or would you rather see only the
real UAV without any virtual enhancements? Maybe even
other enhancements?

• Having a UAV helper at home, would you prefer to set its
targets manually or have a set of possible targets acquired
automatically?

The responses obtained from these inquiries indicated that out
of 26 participants, 21 expressed a preference for vision enhanced by
augmented reality as opposed to non-enhanced vision. Furthermore,
in the scenario of having a UAV assistant at home, 14 of the 26
participants expressed favor for automatic target acquisition over
manual methods.

Pro and Contra arguments. Subsequently, the participants were
requested to enumerate arguments both for and against the subject
under consideration. Similar comments were counted, and the most
prominent points for each perspective are outlined in the following
section. The numeric value enclosed in parentheses signifies the
frequency with which each comment was expressed.

• Positive: Easy to use (13), Physical and mentally easy to
use[5], Least amount of work as the UAV and the headset
does everything (5), Intuitive (3)
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• Negative: Flight path not clear (5), Disliked because voice
commands are generally unreliable (4), Rely on good object
tracking (2), UAV does not avoid obstacles (2)

The prototype was praised by the participants for its simplicity,
intuition, and the little amount of work necessary to achieve the
goal. However, it also had its downsides. We noticed that some
participants were negatively biased regarding the concept of giving
voice commands. They stated voice commands were in general un-
reliable. Others criticized the need for an Internet connection to the
cloud vision service due to data privacy reasons. More prominent
is, however, the argument given by several participants, that they
did not know the flight path of the UAV. They wanted to know and
configure it precisely and in general felt unsure about controlling
the UAV, by not knowing the exact path it would fly.

Free Comments. Finally, the participants were asked to give free
comments based on their experiences with the given UAV con-
trol. Some comments included expressed doubt in voice and object
recognition. Others mention their favor for standard UAV controls
since they are more fun to use. Some arguments against the control
were caused by distrust of voice-based or cloud computing systems
and their privacy policies since they do not explicitly know where
their data is concretely sent to. These participants said they would
use the voice control if it was completely offline and no private
data could be leaked. Again, others simply stated that they liked
controlling the UAV while experiencing AR and had a lot of fun
doing so.

Finally, the users were asked two verbal questions. It was done
verbally, so they would give an intuitive and direct answer without
thinking about it.

First, participants were asked if they were afraid of the UAV
during the study. Nearly all of them answered with a strict no and
reasoned that the smallness of the UAV would not render a threat
to them, which is an important result and the reason why we used
a small UAV.

Second, participants were asked if the UAV could bring them
objects hypothetically, would they use it to get such objects? Ten
participants answered with a strict yes, and ten others stated that
it would depend on the item’s situation, size, value, distance, or
the scenario in general. Only six gave no clear answer or answered
with a no. Although the used UAV could not bring items, we added
this question so that users could think of a use case where a smart
home integrated UAV could be useful. Therefore, a UAV helper at
home that can carry items could be advantageous in the future, as
there exist users who would probably use such a helper.

UAV Performance. In addition to the evaluation given by the be-
havior and feedback of the participants, the performance of the UAV
was also considered. However, due to the fact, that the workwise is
relatively independent from the concrete hardware performance,
this is only discussed shortly. While the UAV was approaching its
targets the path it should fly was concretely calculated using posi-
tion waypoints the UAV should fly along. During the flight the UAV
was relatively stable in mid-air. Nevertheless, when slowing down,
for example changing movement direction necessary when reach-
ing a position waypoint, it jiggled around a bit. In general, when a
target was found, the UAV managed to reach it every time within a

two-centimeter accuracy, which good enough for the experiment
but needs to be improved in the future.

4.6 Discussion
Our target was to answer the research question of whether lay
users can use a UAV with the given features in a way that they
would accept and use them in an IoT environment.

We started with the question of whether users would accept
a UAV in close proximity. To answer this question, we requested
them to state how scared they were of UAVs. We asked them twice,
once before they did the experiment and interacted with the UAV,
and once after the experiment was completed. The majority stated
that their fear of UAVs depended on the size and whether protective
eyeglasses were available or not. Since both reasons were covered
with the small Crazyflie UAV and the protective eyewear, nearly
none of the users stated they had any fear of the used UAV in the
end. As a result, we deduct, that such a UAV would be accepted
and used in an IoT environment when it is small enough and does
not render a threat to the users. Since each participant had to wear
protective eyeglasses, and the UAV was too small to cause injuries,
these conditions were fulfilled during the experiments. However, it
can also be solved by providing a UAV rotor cage as presented by
Kornatowski et al. [27], [26]. Thus, the question of whether users
would actually use a UAV in a smart home depends mainly on the
concrete implementation of the features and their usefulness.

To measure the usability of the implementation features we used
the System’s Usability Scale and the NASA Task Load Index. Regard-
ing the SUS score, and according to the adjective scale presented
by Bangor et al. [2], the prototype was rated excellent.

Regarding The NASA TLX overall, the prototypes workload was
medium. Comparing the mental and physical demands, the physical
demand was lower than the mental one, which had been rated
relatively high. The latter score might be biased by the fact that
many participants worked the first time with a UAV and were afraid
that they could break it. However, it has to be researched further
with additional experiments to showwhether this hypothesis is true
or not. Regardless of whether this hypothesis is true or not, with
a bit of training the mental demand might be lowered. Therefore,
in relation to the research question, we conclude that the UAV and
the given features can be used by lay users in a useful way.

The last question to be answered is whether the given features are
useful enough to be used in an IoT environment. An example use-
case in such an environment is, for example, carrying small items.
The prototype itself did not realize a carry or bringing functions
but rather the foundation to do so. Therefore, when referring to
that use case in an IoT environment most participants stated they
would make use of the system.

In summary, it can be said that the research question can be con-
firmed when considering the concrete prototype and the use case
presented here. For additional use cases and features, the software,
the UAV, and the interactions need to be extended and improved in
some aspects.

4.6.1 Additional Remarks. In addition to the answers to the re-
search question, other notable findings have been made. The find-
ings made suggest a medium general workload and a higher mental
demand. However, many participants stated that the system is easy
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to use requiring only a minimal amount of effort. This contrast
shows a discrepancy between the results shown by the NASA-TLX
values against the free-form answers given by the participants.
This could be attributed to the relatively high technical affinity and
background, such that the participants are used to working in AR
or with UAVs. That might not really reduce the mental load but
make it less stressful for them resulting in higher TLX-values while
experiencing the process itself as easy to use. Another cause could
be grounded in the presence of UAVs. Since participants stated that
they are kind of afraid of UAVs under different conditions, they
could continuously be aware of the UAV resulting in relatively high
mental demand while the commanding process seemed to be easy
and less demanding for them.

Although the study has provided valuable information and no-
table findings, it is important to acknowledge certain limitations
that can impact the interpretation of the results.

5 LIMITATIONS
For the voice-based system, it was expected that some voice com-
mands are not always recognized correctly. For example, people
who have a heavy accent or are not used to the English language
may be sometimes not recognized by voice detection algorithms.
When that happened, they then would try to repeat the command
but remain unsuccessful which increases frustration, the amount of
errors done, and reduces self-confidence However, during the actual
study, most commands got recognized, even if not, the participants
were used to voice commands sometimes not recognized.

In contrast, errors in the automated target acquisition caused by
scanning the environment were not understood so quickly. When
invoking the scan command front camera of the HoloLens is used
to take a picture. Therefore, head-shaking or other head movements
can impact the detection negatively. If the detection algorithm gets
a blurred image, it will be hard to detect the proper objects.

The most common error of image detection was that no object
was found. Consequently, users got the feedback that no object was
found and had to redo the scan procedure. During the study, no
hints were given without an explicit question, and therefore such
errors may have raised the measured mental demand.

During the study, 26 participants tested the UAV control. Most of
them had a high technical affinity and had used AR devices before.
For more representative results, the control needs to be tested
more extensively with more participants and higher background
diversity.

This work examines a generic control approach starting with a
simple task. The setup chosen focused on performance and compa-
rability, and therefore one task with only one and the same object
was chosen for all participants. Whether multiple possible and
changing targets affect usability and load was not considered for
now and is needed to be researched in the future.

The control approach itself is also applicable to other scenarios,
and the hardware is exchangeable. However, whether the same
results can be concluded for tasks significantly different from those
described in this work must be also researched further.

Additionally, although the UAV’s positioning precision was sat-
isfactory nearly all the time during the study, this aspect was not
measured because the focus was on the control itself. Precision

measures and related errors need to be elicited for further use cases.
In addition to that, further tasks with more variety need to be tested
for more meaningful results.

An important aspect to mention when working with UAVs is
safety. During the study, the environment was fixed, users were
not allowed to enter it while the UAV was flying, and they had to
wear protective eyeglasses. This way it was guaranteed that the
UAV could not render any harm to the users, even though it would
be highly unlikely due to the small size of the UAV. Nevertheless,
when considering real-life applications over multiple rooms with
multiple users moving around safety needs to be guaranteed. One
solution for this can be so-called UAV cages like those presented
by Kornatowski et al. [27], [26], but which measures need to be
additionally taken, needs to be further researched in the future.

6 SUMMARY AND FUTUREWORK
In this work, a voice-based UAV control that emphasizes automation
was conceptualized, implemented, and evaluated for integration
in a smart home environment. To command the UAV users have
to invoke a scan command first. Then the HoloLens takes a photo
which is then processed by a cloud vision service to find objects in
the photo and thus in the real world. Found objects are highlighted
in augmented reality as targets and can be approached with the
UAV. For this, users only have to command the UAV to fly to the
object they want, Therefore, users only need to scan and select
targets for the UAV; most other work is automated. The UAV control
was evaluated in a study with 26 participants with regard to user
satisfaction as well as mental and physical demand. The results of
the evaluation showed, that users would use such a UAV control in
a smart home environment if they could benefit from it.

In future work, it would be interesting to combine the strengths
of the HoloLens cameras with the versatility of the UAV such that
the UAV can act even more autonomously. Then, it would be pos-
sible to transfer the scan function to the UAV and users would
not even need to walk around. Additionally, other functionalities
like displaying and changing paths as well as calculating more
complicated paths, including collision detection and avoidance are
necessary for smart home integration.

In general, the UAV not only needs to be enhanced with func-
tionalities enhancing versatility and providing use-cases in a smart
home environment but more research on human-UAV interaction
is also required to pave the way for UAVs integrated into smart
homes in the future. Especially aspects such as safety, privacy, and
security, will play an important role in the interaction between
humans and UAVs.

However, the work-wise of the prototype can be reused as a
foundation for future smart-home-integrated UAVs since it contains
some essential features like semi-automatic target detection of real-
world objects and a way to command UAVs to precise positions
with voice commands.
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