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Abstract—Due to the increased computational capacity of
Connected and Autonomous Vehicles (CAVs) and worries about
transferring private information, it is becoming more and more
appealing to store data locally and move network computing to
the edge. This trend also extends to Machine Learning (ML)
where Federated learning (FL) has emerged as an attractive
solution for preserving privacy. Today, to evaluate the imple-
mented vehicular FL mechanisms for ML training, researchers
often disregard the impact of CAV mobility, network topology
dynamics, or communication patterns, all of which have a large
impact on the final system performance. To address this, this
work presents FLEXE, an Open Source extension to Veins
that offers researchers a simulation environment to run FL
experiments in realistic scenarios. FLEXE combines the popular
Veins framework with the OpenCV library. Using the example of
traffic sign recognition, we demonstrate how FLEXE can support
investigations of FL techniques in a vehicular environment.

I. INTRODUCTION

Connected and Autonomous Vehicles (CAVs) are consid-
ered one of the modern distributed networks generating a
wealth of data daily [1]. CAVs rely on Machine Learning (ML)
models capable of performing autonomous decision tasks, such
as, dynamically adjusting the vehicle’s speed, braking, steering
task based on their surroundings, and other [2]. Nonetheless,
CAVs’s data expose sensitive information about vehicle, driver,
and passengers, where a malicious parties could intercepted
and misused the data.

In this context, it is becoming more and more appealing to
store and process data locally by moving network computing
to the edge [3]. This is possible by the increased computational
capacity of CAVs and network edge nodes, as well as the
worries about transferring private and sensitive information to
the cloud over the network [4]. For this purpose, a privacy-
preserving property makes Federated learning (FL) appealing
an attractive solution for privacy-preserving ML-based appli-
cation for CAVs [4].

FL allows multiple parties to train a Machine Learning (ML)
model locally collaboratively using a given ML architecture
without send its data and send only trained ML models to the
server. FL ensures that the its performance is comparable to
a model trained using a centralized approach, while protect
the privacy of each data owner [3]. Therefore, CAVs could
rely on FL to share their model parameters rather than their

CAVs’s data, and the models are aggregated at cloud servers
to produce an accurate global model [5].

However, FL applied in CAVs is subject to several chal-
lenges related to data, mobility, and communication resources
that impacts the performance of FL. For instance, CAVs
mobility and communication channel varies dynamically in
the vehicular environment, resulting in frequent drop-outs
and hand-overs [6]. In this sense, the transmission delay
caused by FL parameter drop-outs and hand-overs can be
much longer than the time devices take to train their local
ML models, which influences the convergence time of the
global model. In addition, there is a lack of communication
bandwidth and vulnerability to malicious CAVs [6], where it is
necessary to design communication-efficient FL mechanisms
that can significantly improve the global model’s accuracy and
convergence speed, allowing it to be used to train large-scale
ML models. To the best of our knowledge several approaches
[7]–[9] failed to account for CAV mobility, intermittent com-
munication, or network dynamics, putting the evaluation of
aggregated models and FL schemes at risk.

In this paper, we investigate FL under a realistic CAV
scenario. To this end, we propose FLEXE1, an extension to
the well known and widely used Veins simulation frame-
work [10]. FLEXE introduces several enhanced capabilities,
enabling realistic studies of vehicular FL and ML applications.
Specifically, FLEXE relies on the capabilities of Veins to
simulate both the communication among vehicles as well
as their mobility within the road network. In addition, we
integrated the Veins framework with OpenCV (Open Source
Computer Vision Library) to develop feed-forward artificial
neural networks and the Federated Averaging (FEDAvg) model
aggregation algorithm. In brief, the key contributions of this
paper are: i) We present FLEXE, an Open source under the
terms of a GPL license simulation framework for evaluating
vehicular FL applications and communication aspects. ii) We
demonstrate the flexibility and applicability of simulation
studies about FL in CAVs via IEEE 802.11p.

The remainder of this paper is structured as follows.
Section II introduces the related works in FL simulations.
Section III presents architecture and components used as a

1http://www.lrc.ic.unicamp.br/~wellington/
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guideline for the FLEXE. Section IV introduces the simulation
scenario of the FLEXE. Finally, Section V describes this
paper’s conclusion and presents some future work directions.

II. RELATED WORK

Beutel et al. [7] presented a unified approach to FL analytics
and evaluation, called Flower. This framework allows large-
scale FL experiments to consider richly heterogeneous FL
device scenarios. The framework has an Application Program-
ming Interface (API) for using different ML platforms, such
as TensorFlow and PyTorch. TensorFlow Federated (TFF)2 is
an open source library for ML focused on decentralized data.
In summary, TFF is a robust and extensible framework for
conducting FL surveys by simulating federated calculations on
realistic proxy datasets. TFF hosts multiple datasets that are
representative of the characteristics of real-world problems that
can be solved with FL. TFF can also simulate attacks targeting
FL systems and differentiated privacy-based defenses. Besides,
TFF provides some base classes for the FedAvg, federated
stochastic gradient descent (FedSGD) algorithms, and a simple
implementation of the federated evaluation. However, both
works do not consider the inherent vehicular characteristics
of mobility and internet connectivity.

Schettler et al. [11] proposed Veins-GYM to implement
Reinforcement Learning (RL) in the CAVs environments. The
authors combine the Veins framework with OpenAI Gym3,
which allows them to efficiently formulate and test ML/RL
solutions in the domain of Intelligent Transportation Systems.
The framework was evaluated using a problem for selecting
the optimal communication technology in a heterogeneous
communication scenario and presented different hand-crafted,
learning-based, and hybrid approaches. On the other hand,
Veins-GYM does not consider an FL architecture and its
application scenario, instead focusing on RL techniques.

Li et al. [8] developed a framework for efficiently building
simulators for FL. Unlike Ad Hoc simulators, FLSim4 is
envisioned as an open repository of simulator building blocks.
Developers can create different simulators by combining the
selected components, allowing researchers to focus on the
studied problems. Dimitriadis et al. [9] introduced “Federated
Learning Utilities and Tools for Experimentation” (FLUTE)5,
an open source platform for FL research and offline simula-
tions. FLUTE enables the prototyping and simulation of new
FL algorithms at scale, including novel optimization, privacy,
and communications strategies. However, both works focus on
the development and behavior presented by the applications
that use federated learning. In addition, the works do not
consider intermittent communication and the impacts on the
federated model accuracy.

By analyzing the related works, we argue that a realistic
network simulation is critical to analyze FL approaches, since
FL heavily rely on communication to exchange the models

2https://www.tensorflow.org/federated
3https://www.gymlibrary.ml/
4https://github.com/facebookresearch/FLSim
5https://github.com/microsoft/msrflute

parameters. Most of existing approaches [7], [8] did not
take into account CAV mobility, intermittent communication,
or network dynamics, which could jeopardize the evaluation
of aggregated models and FL schemes. Furthermore, some
approaches [7], [9] require a more controlled and specific
environment to function properly.

III. FLEXE STRUCTURE

We developed FLEXE to make it possible to implement and
develop vehicular FL applications within the context of CAVs.
It further simplifies the process of modeling specific ML and
FL applications into environments suitable for CAVs. FLEXE
integrates the Veins framework [10] with OpenCV [12] to im-
plement feed-forward artificial neural networks. Specifically,
we developed FLEXE on top of the veins network simulator
to simulate the dynamics of communication between vehicles.
In addition, FLEXE relies on OpenCV, which is a well-known
open source computer vision and ML library to allow data
to be formatted locally before being transmitted to others
CAVs or Road Side Units (RSUs) inside the communication
range. Figure 1 depicts the schematic overview of the extended
simulation framework.

We implemented the model of training and transmission
on top of Veins framework, version 5.2. We use OpenCV
version 4.5.5 to implement the model training and testing. For
the simulation of traffic and vehicle mobility, we employed
SUMO version 1.8.0. This allows us to reproduce the desired
vehicle movements with random cruise speed and Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) interactions
according to empirical data.

SUMO
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Fig. 1. FLEXE schematic structure

A. CAVs Network Dynamics Simulator
Veins is an OMNeT++ network simulator that includes

the complete vehicular communication stack based on IEEE
802.11p and tailored channel models. It also models a real-
istic node mobility using the Simulation of Urban MObility
(SUMO) road traffic simulator, SUMO exposes the TraCI
interface, which connects the net- work and traffic simulation
frameworks. The Veins framework updates the mobility model
every time a vehicle moves in order to replicate the movement
in the corresponding OMNeT++ node.

FLEXE considers the network’s dynamic changes to evalu-
ate the behavior of CAVs with greater realism, which is critical
for developing new mechanisms and FL applications in the
vehicular environment. Veins collects statistics on received
packets and failures, as well as the internals of the state
machine, which are methods for thoroughly evaluating the
network behavior of the FL applications.
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Veins concentrated on the communication layer, which is
critical for actual channel access and packet transmission. Each
OMNeT++ node is linked to a network stack that includes
an IEEE 802.11p wireless network interface, a beaconing
protocol, and one or more applications. This network stack
(Communication Layer) is directly connected to FLEXE (Ap-
plication Layer). The communication layer notifies the FLEXE
layer of several events, such as successful or unsuccessful
packet reception, channel busyness or idleness, and incorrect
packet decoding. Veins also considers the impact of obstacles
on using a packet reception model. Assuming that each ob-
stacle is a polygon, the received power is reduced based on
the number of edges intersected by the signal and the distance
covered within polygons.

B. Machine Learning for CAVs Research

FLEXE relies on OpenCV library to develop the Multi-
Layer Perceptron (MLP) and to simulate ML applications
in the vehicular scenario. OpenCV provides a common in-
frastructure for computer vision applications and speed up
machine perception’s incorporation. A high-level interface was
provided for processing, capturing, and presenting image data.
The OpenCV library includes algorithms based on artificial
neural networks, support vector machines, the K-nearest neigh-
bor algorithm, and many more.

The most common type of neural network is MLP. MLPs
are typically composed of at least three layers, the input layer,
output layer, and one or more hidden layers. The first layer
containing a neuron for each input feature of the data and
the last layer containing a node for each class label. The
layer in between is referred to as the hidden layer. Each
layer of MLP contains one or more neurons that are linked
to neurons in the preceding and following layers. We use
the CV::ML::ANN_MLP class from the OpenCV library to
perform local training of the model in each vehicle.

First, using the non-default constructor, an MLP with the
specified topology is created. The initial weights are all
set to zero. The network is trained with a set of input
and output vectors, we use the interface of training data
CV::PTR<CV::ML::TRAINDATA> to load the dataset. Unsu-
pervised learning algorithms use training data with no response
to learn the structure of the supplied data based on distances
between different samples. In supervised learning algorithms,
which learn the function mapping samples to responses, train-
ing data with a response is used. Typically, the responses
are scalar values, either ordered or categorical. The training
procedure can be repeated multiple times, with the weights
being adjusted based on new training data.

C. Implementing FL Capabilities in Veins

We designed the FLEXE sequence diagram involving local
training and testing of the model, and also the aggregation
and update of the global model, as depicted in Figure 2. We
assume that each vehicle (client) gets a random subset of the
data. This data is then distributed to various clients in order
to train collaboratively, and the communication round begins.

Each communication round consist in 4 steps, and these steps
comprise the vehicular FL. The procedure entails sending the
current global model state to participating clients, training
local models to generate a set of potential model updates,
and then aggregating these local updates into a single global
update and applying it to the global model. In this sense, we
demonstrate the functioning and dynamics considered in an
FL scenario simulated by FLEXE.

The initial step (i.e., step a) of the vehicular FL occurs
when the global model is disseminated to the clients by the
remote server. In each client, the model is created using the
OpenCV library. After that, the second step (i.e., step b) is
initiated in each CAV separated, where it conducts the local
model training based on local data. We use the OpenCV’s
training data interface to split the data for each client and train
the local model with the MLP class. Local model training
may take different times for different clients, depending on
local training data. Once the local training is completed, the
generated local model is uploaded to the server, where it is
encapsulated and sent using the veins module. It is important to
note that the transmitted packet may be lost at this point due
to the network dynamics depicted in the vehicular scenario.
Finally, the server generates the new global model based on
aggregating the collected local models (i.e., step c) and sends
the updated global model (i.e., step d).

In the FLEXE architecture, we implemented the widely
and predominant used FL algorithm for aggregation called
FedAvg [13]. The aggregation is made in step c, as shown
in Figure 2, where the server receives the minimum number
of models from different clients and averages the local models
to compute the updated global model. FedAvg assumes that
all clients are willing to join each communication round for
FL training.

b

Server Client 1 Client n

a Send global model c Aggregate models

d Send updated model

a

c

b Local trainning & test

d

Fig. 2. FLEXE Framework Sequence Diagram

IV. PROOF OF CONCEPT

To demonstrate the possibilities opened up by FLEXE,
we present a showcase of Traffic Sign Classification in
the vehicular FL environment. This section also details the
methodology and metrics used to evaluate the accuracy of the
aggregated models in two different communication scenarios:
with or without considering that buildings act as obstacles to
the propagation of wireless transmissions. Subsequently, we
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Fig. 3. FLEXE simulation scenario with main components

evaluate the impact of the different numbers of vehicles in the
aggregated model.

A. Scenario description

In order to evaluate the impacts of vehicular mobility in
the FL models, we conducted simulations in a Manhattan
Grid scenario. The scenario is a 1 km2 fragment of Manhattan,
USA, with several blocks and two-way streets so the vehicles
can move in opposite directions. The vehicle densities varied
from 20 to 200 vehicles/km2. Vehicles in the simulation have
the same dimensions, mean speed, and standard deviation
speed. Furthermore, we use a random mobility model to gen-
erate the vehicles’ routes, so that different paths are generated
for each vehicle for each replication and density. We conducted
10 simulation runs with different randomly generated seeds.

As shown in Figure 3, a server node with a single global
model and a hundred participating vehicles comprise the simu-
lation scenario. We also consider putting an RSU in the middle
of the scenario to cover all vehicles. It is assumed that all
participating vehicles are willing to train the FL model using
local data. Each CAV has one hidden layer, which contains 50
neurons with Symmetrical Sigmoid activation functions. Each
communication round, the CAVs train the local model with 75
epochs.

We used the Chinese Traffic Sign Database [14] as the
training dataset for evaluating the proposed scheme to evaluate
the behavior of FL applications in the vehicular context. There
are 6164 traffic sign images and 58 sign classes in the Traffic
Sign Recognition Dataset. Each vehicle was allocated samples
randomly from 58 classes. Training samples were changed in
the whole simulation. The entire database is divided into two
sub-databases: training and testing. There are 4170 images in
the training database and 1994 images in the testing database.
All images are labeled with the four sign coordinates and the
category coordinates. All the main simulation parameters are
summarized in Table I.

B. Simulation Results

Figure 4 presents the learning accuracy results for the
application of Traffic Sign Recognition with different numbers
of vehicles. Different vehicle densities and mobility were
evaluated to analyze the impact on the accuracy of the trained
and aggregated models. It is worth noting that the vehicles
had the same training conditions, varying only in the training
data. We can see, in Figure 4(a) and Figure 4(b), that a small

TABLE I
SIMULATION PARAMETERS

Parameter Value

co
m

m
un

ic
at

io
n

Simulation area 1 km2

Number of road segments 9
Scenario Grid
Number of vehicles {20, 40, 60, 80, 100, 200}
Vehicles speed 13.84 m/s (50 km/h), St.Dev: 5.27
Beacon transmission rate 1 Hz
Transmission power 15 mW
Reception sensitivity −110.0 dB
Bitrate 6 Mbit/s
Transmission range 300 m

FL
co

nfi
gu

ra
tio

n Minimum number of clients 2
Learning rate 0.000001
Number of epochs per round 75
Activation function Symmetrical Sigmoid
α & β 0.0 & 0.0
Hidden layer formation 2150 × 50 × 58

number of vehicles results in a lower accuracy of the aggregate
models. This is due to the fact that there are fewer customers
available to contribute to the global model. The same result can
be observed with the total number of communications rounds,
the results being less than 10 rounds in total.

All vehicles in the scenario also transmit beacons with a
frequency of 1 Hz to represent a concurrent application. It
is possible to observe in Figure 4(c) that the impact of the
evaluated scenarios on the accuracy values, we can observe
that the accuracy values for the scenario without obstacles
were 10% higher compared to the accuracy values in the
scenario with obstacles. However, this difference tends to be
reduced with a greater number of communication rounds. In
the simulation scenarios, everyone had the same period of 200
simulation times to perform the message exchanges.

With a higher density of vehicles, the difference between
the models tends to be reduced, as shown in Figure 4(d). This
is due to the fact that there are more clients and, consequently,
more communication rounds available to converge the global
model, which lessens the impacts caused by block transmis-
sions. The highest values observed in the accuracy occurred
with the density of 100 vehicles, as can be seen in Figure 4(d),
with a value of 84% in the scenario with obstacles and 87% in
the scenario without obstacles. In addition, we simulated the
centralized scheme with 94% accuracy versus the FL scheme.

We conclude from the simulation results that FLEXE pro-
vides a realistic network simulation for vehicular FL appli-
cations, which is important when analyzing FL approaches
because they rely heavily on communications to function.

V. CONCLUSIONS AND FUTURE WORK

We described the structure and aggregate model of FLEXE,
a new framework for simulation of FL in CAV. Its adaptable
design allows for the implementation of a variety of FL
schemes, including horizontal, vertical, and Federated Transfer
Learning. FLEXE is free to download and use, built for cus-
tomization, and allows for the realistic simulation of wireless
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Fig. 4. Impact of vehicle density on the accuracy

networking and vehicle dynamics. The paper demonstrates the
FLEXE simulator’s potential by focusing on one application,
Traffic Sign Classification. FLEXE, we believe, can be a useful
research tool for large-scale analysis and comparison of vehic-
ular FL systems prior to their actual deployment. Following
the tradition of Veins, our contributions are available for the
research community6.

As future works we aim to provide support for other ML
platforms such as TensorFlow7 and Darknet8. In addition,
we aim to include more complex aggregation operations and
additional parameters to allow for even more personalization
when accounting for non-i.i.d data in FL.
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