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Abstract—In Vehicular Ad Hoc Networks (VANETs), neighbor
information of vehicles is an important prerequisite for many
use cases ranging from intersection collision avoidance up to
more complex applications like vehicular platooning. A prime
use case of this neighbor information is message forwarding
in larger scenarios. The conventional way of transferring this
neighbor information in VANETs is beaconing – simple one-hop
broadcasts periodically transmitted by each vehicle including
position and mobility information. A key requirement for efficient
beaconing protocols is to keep the size of beacons small to
avoid channel congestion. One possible approach to reduce the
beacon size is to transmit the information in a compressed form
using a probabilistic data structure, like a Cuckoo Filter. In
order to inform nodes at larger scenarios, recent works have
shown that extending the beaconing approach with two-hop
neighbor information is beneficial. In this paper, we employ such
a beaconing scheme and use a two-hop neighbor table approach
utilizing Cuckoo Filters for warning message dissemination. A
core contribution of our work is the extension of standard Cuckoo
Filters to support the union operation which is necessary for
proper two-hop neighbor management. We compare our Cuckoo
Filter approach against a naïve approach that transmits raw
information for beaconing to evaluate the effectiveness of our
system. Our results show that our Cuckoo Filter approach
performs better than a naïve approach in terms of channel
utilization and shows an increased number of covered two-hop
neighbors for warning message dissemination.

I. INTRODUCTION AND RELATED WORK

In Vehicular Ad Hoc Networks (VANETs), research has
shown that maintaining one-hop and two-hop neighbor infor-
mation is beneficial for performing operations like routing,
clustering, and message dissemination [1]. A core principle
in that area to exchange neighbor information is beaconing –
the transmission of small one-hop broadcasts among vehicles.
This has also been incorporated by standardization bodies
resulting in standardized message formats, e.g., Cooperative
Awareness Messages (CAMs) [2], [3]. For this purpose, a
small beacon size is desired as it decreases the probability of
frame collisions and generally contributes to a lower channel
utilization allowing other applications to use wireless channel
resources as well. In the past, many works investigated the
frequency at which beacons are transmitted by vehicles to make
efficient use of the wireless resources. Even standardization
bodies addressed this concept, e.g. ETSI ITS-G5 Decentralized
Congestion Control (DCC) [4], which adapts the beaconing
interval based on channel conditions. From the perspective
of message forwarding, many works investigated different

concepts for routing in ad-hoc networks, e.g., classifying traffic
based on their information [5] or investigating unicast routing
concepts for vehicular networks [6].

In one of our previous works [1], we have shown that having
two-hop neighbor information is beneficial for transmitting
messages among two-hop neighbors by introducing Bloom
Filters for neighbor table management. Bloom Filters for
message dissemination are also studied in an earlier work by
Bujari [7], where the explicit use and maintenance of two-hop
neighbor information was not a focus of the work. Further, the
work by Alzamzami and Mahgoub [8] proposes a geographic
routing protocol in VANETs which demonstrates improved
performance by selecting forwarders based on distance and
link quality. Similarly, a routing protocol called Fast Multi-hop
Broadcast Algorithm (FMBA) for VANETs is introduced by
[9] to address the message dissemination delay by selecting the
fastest vehicle in the transmission range to deliver the message
to the destination. Another routing protocol called Direction
Aware Best Forwarder selection (DABFS) is introduced by [10]
for efficient transmission of warning messages. They consider
the bidirectional nature of highways and present a direction-
based greedy approach to select the best node for transmission.
The work by Amador et al. [11] explores the shortcomings
of ETSI ITS-G5 Contention-Based Forwarding (CBF) and
proposes solutions that reduce the number of transmissions and
improve message delivery. A recent work by Kartun-Giles et al.
[12] focuses on analyzing the expected number of vehicles with
a two-hop connection to a fixed roadside unit (RSU) in VANETs
which can be beneficial for predicting densities of vehicular
networks to optimize parameterization of networking protocols.
One of our recent works explored the use of Cuckoo Filters for
managing neighbor information in VANETs [13]. The Cuckoo
Filter is a more recently developed probabilistic data structure
that claims better space efficiency than traditional Bloom Filters
for low target false positive ratios [14]. Based on our previous
work, we are revisiting the Cuckoo Filter in the context of
VANETs to build a novel message forwarding protocol in this
paper. To achieve this, we investigate Cuckoo Filters for their
ability to support message forwarding protocols based on two-
hop neighbor tables, where we discover important shortcomings
of standard Cuckoo Filters to support these type of applications.
To address these shortcomings, we design, implement, and
evaluate a union operation for Cuckoo Filters that utilizes a
technique called bit reservation which is a prerequisite in our
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Figure 1. Cuckoo Filter insertion: High-level overview.

scenario for efficient message dissemination based on two-hop
neighbor tables.

II. THE CUCKOO FILTER

The Cuckoo Filter is a set membership probabilistic data
structure that is designed to use a limited amount of memory
resources. After inserting items, the data structure can be
queried for an item and will answer positively if the item has
been previously inserted. If the item was not inserted, however,
the data structure might still answer positively, resulting in a
false positive answer. A false negative answer is not possible
in standard Cuckoo Filters. The Cuckoo Filter is a condensed
version of the Cuckoo Hash Table [15], however, instead
of storing key-value pairs, the Cuckoo Filter only stores
fingerprints - a bit string generated by hashing the original item
followed by truncation [14]. The probability of false positive
results increases with the compression of the data, resulting
in a trade-off between accuracy and consumption of resources.
A standard Cuckoo Filter1 consists of a simple hash table
structure - an array of buckets where each bucket can contain
multiple entries, each being capable of storing one fingerprint.
The minimum size of the fingerprint required depends on the
desired false positive ratio ϵ. For a smaller value of ϵ, the size
of the fingerprint needs to be increased. The value of ϵ also
depends on the capacity of the filter and the number of items
to be inserted into the filter. The standard Cuckoo Filter allows
to perform three operations: insert, look-up and delete [14].
Figure 1 presents a high level overview of the insertion process.
At the insertion process, the item is hashed to a larger value.
Afterward, the index and the tag (fingerprint) are computed
using the upper and lower 32 bits of the value, respectively.

III. MESSAGE FORWARDING WITH CUCKOO FILTERS

A core principle for efficient message dissemination in highly
mobile networks is to select neighboring nodes as forwarders.

1https://github.com/efficient/cuckoofilter

This could be achieved by optimizing message dissemination
towards a specific geographic direction (geocasting) where
nodes closest to that direction are selected to forward that
message. Another possibility is to select forwarder nodes in a
way to cover all or most of a node’s two-hop neighbors.

To enable the Cuckoo Filter to be used for message dissem-
ination in VANETs following this principle, it is important
to combine the information from multiple Cuckoo Filters. In
particular, to derive the minimum set of one-hop neighbors
to be fitting forwarders to maximize the number of covered
two-hop neighbors, we need to employ set operations on the
Cuckoo Filters of each individual node. In our previous work
[1] we have achieved this by using the union set-operation
together with cardinality estimation on Bloom Filters. Due
to the principle of Cuckoo Filters (see their limitations in
Section III-B), a union operation like in Bloom Filters (bit-wise
or operation) is not natively possible. Our main contribution of
this paper is to introduce this set operation to obtain a union
(∪) of several Cuckoo Filters to enable sophisticated message
dissemination protocols using this type of probabilistic data
structure.

A. Neighbor Management

In VANETs, vehicles send beacons to exchange neighbor
information. In our scenario, each beacon contains the sender
vehicle’s Medium Access Control (MAC) address (6 Bytes)
and a Cuckoo Filter filled with the sender’s one-hop neighbor’s
MAC addresses. In Figure 2 we show an example of such
a scenario: The nodes B and C are the one-hop neighbors
of node A. The green dotted circle represents the exemplary
communication range of A. Whenever a vehicle receives a
beacon, an entry containing the sender’s MAC address and
the Cuckoo Filter containing its one-hop neighbor’s MAC
addresses is added, or, if it already exists, updated. In order to
check whether bidirectional communication is possible, node
A looks up its own MAC address in the Cuckoo filter received
from node B to check whether node B has previously received
a beacon from node A. This way, node A can be sure with
a high probability that node B can receive messages from
node A. We consider a neighbor entry stale if six consecutive
beacons are not received from the same sender. Concerning
figure 2, the nodes D and E are the one-hop neighbors of either
B or C which makes D and E the two-hop neighbors of A.
The red and blue dotted circles again represent the exemplary
communication range of B and C, respectively. We now merge
the neighbor’s one-hop Cuckoo Filters to create a unified filter.

B. Extending Cuckoo Filters To Facilitate Union Operation

The main reason why a standard Cuckoo Filter is unable to
perform union operation is because comparison of fingerprints
is not possible for different-sized filters. Fingerprints only
then are identical when the generated fingerprint and index
values are identical. Since the index calculation is dependent
on the filter size, it is impossible to know the index value of
a fingerprint in a different-sized filter without the knowledge
of the original item. To address this limitation, we extend the



Figure 2. One-hop, two-hop neighbors and re-broadcast set for car A.

Cuckoo Filter with a bit reservation technique which allows us
to create a union. First, the fingerprint stored in a filter needs
to be made transferable from any filter to a filter called the
Union filter. For this, the corresponding index value has to be
known. The Union Filter capacity needs to be large enough to
accommodate all the fingerprints that we obtain after the union
operation. We transfer fingerprints received through one-hop
filters into the Union Filter such that there exist no colliding
fingerprints, resulting in a two-hop Union Filter. It is important
to emphasize that a Union Filter is just a simple Cuckoo Filter
that contains the fingerprints as a result of the union operation.
Its main characteristic is that it has a fixed pre-defined size.
In our extended Cuckoo Filter, when an item is inserted into
a given filter along with the fingerprint and bucket index, an
additional corresponding bucket index is also computed for the
Union Filter. From the knowledge of the pre-defined size of the
Union Filter, the index calculation for the Union Filter is trivial.
This additional information regarding the Union Filter index is
then stored at a particular portion of the fingerprint using the
bit reservation technique. Afterwards, this index information
of the Union Filter is transferred along with the fingerprint
itself. The fingerprint has a predefined storage length (bits-per-
item). From these bits, m most significant bits are reserved
for the storage of the Union Filter index. The remaining bits
remain the same as the original fingerprint. The size of m
needs to be large enough to match the maximum capacity of
the Union Filter. When the fingerprint is transferred to the
Union filter, the bucket index value for the Union Filter of a
particular fingerprint is extracted from the reserved m bits of
the fingerprint. Figure 3 demonstrates a high-level presentation
of the modified Cuckoo Filter.

For simplicity, we predicted the number of vehicles and the
thereby required capacity of our Union Filter based on empirical
observations. If the capacity is not predicted correctly and more
items than there is capacity for are inserted, an overflow occurs.

C. Two-Hop Neighbor Table Construction

In Algorithm 1 we show how the two-hop neighbor set
is constructed. Each entry of the neighbor table consists of a
node’s ID and a Cuckoo Filter containing all one-hop neighbors
of that node. Initially, Algorithm 1 deletes a target vehicle’s
self-ID and the IDs of its direct one-hop neighbors from
all the Cuckoo Filters, leaving them with the overlapping

Figure 3. Modified Cuckoo Filter for union operation.

fingerprints of only two-hop neighbors. At this point, the
Algorithm 1 transfers all the fingerprints to the Union Filter,
skipping duplicates. A limitation of this algorithm is that it
ignores the fact that two different items might generate a
colliding fingerprint and bucket index. The algorithm does
not differentiate whether this is due to the same item or
a different item, leading to a more inaccurate cardinality
estimation. This limitation, however, is just a matter regarding
the parameterization of the Cuckoo Filters. Particularly, using
longer fingerprints (increasing the size of Cuckoo Filters)
lowers the impact of that limitation.

Algorithm 1 Two-hop neighbor filter construction
Require: A neighbor table where each entry contains the

sender’s ID and a Cuckoo Filter of its one-hop neighbors
1: // delete self-ID and one-hop neighbor’s IDs
2: for all CuckooF ilter ∈ neighborTable do
3: if CuckooF ilter contains self-ID or any direct one-hop

neighbor IDs then
4: Delete self-ID and direct one-hop neighbor IDs from

the CuckooF ilter
5: end if
6: end for
7: //now all the filters in the neighbor table only contain the

two-hop neighbor IDs
8: for all CuckooF ilter ∈ neighborTable do
9: Extract UnionFilter index from fingerprint

10: Transfer all the fingerprints to the UnionFilter that do
not have a collision

11: end for
12: return UnionFilter

IV. RE-BROADCASTER SELECTION

With the two-hop neighbor information available, we propose
a greedy approach to select a small subset of one-hop neighbors
as re-broadcasters to disseminate a message covering two-hop
neighbors. We define U as the set of visible one-hop neighbors,



cu as the one-hop Cuckoo Filter of node c where c ∈ U, as
well as f ′′ as the two-hop Cuckoo Filter, and R as the selected
set of re-broadcasters. Visible neighbors are neighbors with
bidirectional communication.

Algorithm 2 Re-broadcaster selection
Require: An empty R, cu∀c ∈ U and f ′′.

1: for all cu do
2: if (c ∈ U) ̸∈ R and cu has maximum number of

overlapping fingerprints in f ′′ then
3: Insert c into R
4: Delete all matching fingerprints of cu from f ′′

5: Repeat the process until f ′′ is empty
6: end if
7: end for
8: return R

In Algorithm 2 we select the subset of one-hop neighbors
to disseminate the warning message to all two-hop neighbors.
While a warning message is disseminated, R is also sent along
so whenever receiving a warning message only the member
vehicle of the R set re-broadcast it. The set R is sent in raw
format (thus, as a list of neighbor IDs) as it usually is of
negligible size. In our example in Figure 2, the algorithm
will select B as the member of the R set since it covers the
maximum two-hop neighbors of A. Hence only A and B would
broadcast the warning message.

V. EVALUATION

We evaluate our Cuckoo approach against a naïve approach
where beacons use the actual MAC address (6 Bytes) as the
vehicle IDs and do not use any data compression mechanisms
like Cuckoo Filters. We further evaluate the model against an
oracle based on a unit disc model where we approximated
the maximum communication distance based on an empirical
approach. A core metric to assess the efficiency of our
approach is the channel utilization, which expresses the fraction
of time the wireless channel is occupied. To evaluate the
Cuckoo approach’s performance, we assess its effectiveness
in disseminating messages by comparing it with the naïve
approach.

A. Simulation Setup

We use the discrete event simulator OMNeT++ [16], the
traffic simulation tool SUMO [17] and the vehicular network
simulation framework Veins [18], using IEEE 802.11p as the
communication technology. To avoid border effects, we use a
warm-up period as well as a region of interest for the result
recording.

In Table I we show the main simulation parameters. We
specifically selected the timing and location for data collection
to ensure the data accurately reflects areas with uniform vehicle
traffic density. The warning messages are transmitted three
times by the original sender to compare the effectiveness and
the efficiency of the message dissemination protocol using
the two approaches. We chose a reservation of 5 bits for

Simulation Parameters Value
Freeway length 5000m

No. of lanes per direction 4
No. of cars per lane 250

Simulation time 50s
Transmission power 2mW

Data rate 6Mbit/s
Center frequency 5.89GHz

Channel bandwidth 10MHz
Path loss coefficient α 2.0
Beaconing frequency 10Hz
Oracle comm. range 170m

Fingerprint Size 12 bits
Reserved bits 5

Union Filter table size 32

Table I
SIMULATION PARAMETERS FOR HIGH-DENSITY.
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Figure 4. Neighbor count of our Cuckoo and naïve approach, and the oracle.

maintaining a Union Filter with table size 32 since it is required
to represent the index in the range 0, 1, . . . , 31 (see Table I). In
a standard Cuckoo Filter, each bucket can hold four fingerprints
hence a Union Filter with a table size of 32 can contain at
most 128 fingerprints. A filter with this capacity turns out to
be a sufficient fit for our scenario.

B. Results

All the result plots of this paper are shown with error bars
marking 95% confidence interval for 30 simulation runs for
statistical significance.

In Figure 4a we show the comparison of the one-hop
neighbor count against the oracle. As can be seen, the number
of one-hop neighbors of the Cuckoo approach is closer to the
one of the oracle’s approach in contrast to the naïve approach.
Still, the one-hop neighbor counts of the Cuckoo and the naïve
approach differ substantially from the oracle as the oracle
does not model channel effects such as interference and frame
collisions. Since the Cuckoo approach reduces the beacon size,
the beacons require less time for transmission and thus the
frame collision chance is reduced.

Figure 4b shows the results for the two-hop neighbor count.
It is apparent that the Cuckoo approach better approximates the
oracle than the naïve approach. However, it should be noted
that the difference between the Cuckoo and the naïve approach
is not as drastic for the two-hop count as it is for the one-
hop count. This is because when a neighbor is not correctly
identified as a one-hop neighbor (e.g., due to interference or
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Figure 5. Cuckoo Filter message forwarding performance in comparison to
the oracle.

frame collisions), there is a high chance that it might be falsely
identified as a two-hop neighbor instead. Again, this is mainly
caused due to channel congestion and interference in general.

Figure 5a compares the average channel utilization between
our Cuckoo and the naïve approach. The figure shows that the
Cuckoo approach achieves lower overall channel utilization
than the naïve approach which is caused by the smaller beacon
sizes when using Cuckoo Filters. This allows our approach to
preserve channel resources to be used by other applications.

Figure 5b illustrates the percentage of warning messages
received by the Cuckoo and naïve approach. It can be seen that
the Cuckoo approach has a tendency for a higher mean received
percentage than the naïve approach. This means, that using
Cuckoo Filters could be a promising approach for designing
efficient message dissemination protocols for two-hop neighbor
management. Due to the space efficiency of Cuckoo Filters,
even more sophisticated approaches, e.g., extending our concept
to n-hop neighbor dissemination could be possible.

VI. CONCLUSION

In this paper, we investigated probabilistic neighbor manage-
ment using the Cuckoo Filter. To employ efficient message dis-
semination among two-hop neighbors utilizing neighbor tables
in highly dynamic scenarios, we extended the Cuckoo Filter to
allow for a union set operation. To assess the performance of our
approach, we benchmarked the message dissemination approach
against a naïve approach and a ground truth by comparing
performance metrics to an oracle. The evaluation based on in-
depth simulation studies shows promising results which could
make Cuckoo Filters an alternative to other probabilistic data
structures like Bloom Filters for certain applications.
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