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Abstract—Cooperative driving in general and Cooperative
Adaptive Cruise Control (CACC) or platooning in particular
require blending control theory, communications and networking,
as well as mechanics and physics. Given the lack of an integrated
modeling framework and theory as well as the prohibitively high
costs of using prototypes for what-if studies, simulation remains
the fundamental instrument to evaluate entire cooperative driving
systems. This work presents PLEXE, an Open Source extension
to Veins that offers researchers a simulation environment
able to run experiments in realistic scenarios, taking into
account physics and mechanics of the vehicles, communications
and networking impairments, and Inter-Vehicle Communication
(IVC) protocol stacks. PLEXE is easily extensible and already
implements protocols to support platooning and cooperative
driving applications and several state of the art cruise control
models. We describe the structure of the simulator and the
control algorithms that PLEXE implements and provide two use
cases which show the potential of our framework as a powerful
research tool for cooperative driving systems.

I. INTRODUCTION

In the quest to improve road infrastructure usage and to boost
safety, cooperative driving with active information exchange
between vehicles using Inter-Vehicle Communication (IVC) has
been identified as a key solution, if not the most important one.
The challenge is to develop vehicles that relieve humans from
the driving duty, in an efficient, smart, and safe way. Modern
cars already provide the so called Adaptive Cruise Control
(ACC), i.e., a radar-based system which automatically maintains
a safety gap to the vehicle in front. Such system however does
not improve road traffic efficiency because of the size of the
safety gaps it has to maintain. For this reason, projects like
PATH and SARTRE started to work on its evolution towards
Cooperative Adaptive Cruise Control (CACC) [1], [2].

CACC exploits IVC to enhance system’s reaction time, thus
providing improved safety even while driving at small distances.
Most projects employ Dedicated Short Range Communications
(DSRC) for IVC, but some consider LTE/LTE-A as well, all
focusing on very low latency real-time communication among
the involved vehicles.

The overall challenge does not merely include CACC
design, but all the procedures and maneuvers that will enable
the so called platooning application. In this work, the term
platooning indicates general cooperative driving applications
that involves platoons, i.e., groups of vehicles that coordinate
their movement. Applications include emergency braking, multi-
vehicle automated driving and maneuvering, and not only

vehicle-following applications. Indeed, designing a CACC
means answering the question “How do we make vehicles
automatically follow each other?”, but the questions that
platooning arise are many more: “How do we form, manage,
and disrupt platoons?”, “Can the network support crowded
scenarios?”, “How does a platoon interact with human-driven
vehicles?”. So far, these questions have only partially been
answered.

We can find theoretical [3], experimental [4]–[6], and
simulative studies (or a combination of them) on platooning.
Simulative studies provide the basis for showing characteristics
of designed controllers [7], performing large scale analysis,
investigating maneuvers and possible interactions with human-
driven vehicles [8], or proving benefits on traffic flows [9].
The limitations of simulative studies is that they are often
missing important aspects (e.g., communication impairments
or vehicles’ physics), or the experiments lack reproducibility
because the simulator is not available or it is proprietary. This
is especially worrying, because the tools used to draw the
scientific conclusions are not available for peer review.

In this paper, we present PLEXE1, an extension to the well
known and widely used Veins2 simulation framework [10],
introducing several enhanced capabilities that enable realistic
studies of platooning concepts and applications. Making use of
the capabilities of Veins to simulate both the communication
among vehicles as well as their mobility within the road
network, PLEXE also integrates all the necessary components to
study platooning ranging from controller models to maneuvers
to form and to maintain platoons.

The contributions of the paper can be summarized as follows:
• We provide the community with a free, Open Source tool

that can be used for testing platooning control models
and maneuvers in large-scale and mixed scenarios;

• We describe the structure of PLEXE and detail the cruise
control models it implements to ease the process of
customizing it;

• We provide two use cases that show the potential of the
simulator. In particular, one example extends PLEXE by
implementing a user-defined control algorithm and by
comparing it with the ones provided by the simulator,
while the second shows how to use PLEXE to implement
and analyze a join maneuver.

1 http://plexe.car2x.org 2 http://veins.car2x.org



II. BACKGROUND AND RELATED WORK

The aim of this section is to reason about the new integrated
approach used in PLEXE. We concentrate on the works that
developed or used a platooning simulation framework for per-
formance analysis. Thus, we focus on simulation environments
that allow investigation of the joint performance of road and
telecommunication networks, finally listing the features that a
platooning simulation tool should have.

A. Simulation Tools

Fernandes and Nunes [11] developed a platooning simulator
based on extensions to SUMO, implementing a CACC car
following model, which was described in [5]. The simulator,
however, is not publicly available and assumes all vehicles
but the leader to be CACC driven, thus it is not possible to
consider legacy vehicles, and the tool assumes a simple scenario.
The road is a single-lane highway, so formation/disruption of
platoons cannot be investigated, as well as any other maneuver.
The authors focus essentially on the vehicle dynamics perspec-
tive, assuming a synchronized slotted communication protocol
where no interference, collisions, and packet losses occur.

The goal of the work presented in [12] is developing a
simulator, called Hestia, for the vehicular part of the problem
and for testing different solutions based on a distributed agent
modelling. It is implemented in a 3D environment to be able to
capture all aspects concerning vehicle dynamics, down to object
detection through sensors, as well as engine and road conditions.
The communication part instead is idealized, without a proper
simulation of the communication network at the packet and
signal levels. Moreover, it does not support mixed scenarios
and its scaling properties are not discussed.

van Arem et al. [9] studied the impact of CACC systems on
traffic flow. To reach their goals, they developed a stochastic
simulation model, which features a multi-lane highway where
vehicles can change lanes and overtake each other. Moreover,
different vehicle types can be used, and the simulator can
emulate both human and automated behaviors. However, the
simulator does not consider communication impairments, pack-
ets are never lost and channel interference is not considered.

The work by Lei et al. [7] performs a simulative study of
a CACC system in order to determine the effects of packet
losses on the string-stability of the controller. The authors
develop a complex system where control laws are implemented
in Matlab/SIMULINK, road network and vehicles are handled
by SUMO, and the network is simulated by OMNeT++. The
simulator is however dedicated to the analysis of the specific
control system and not publicly available.

On the other hand, studies like [13] are more interested in
realistic network simulation rather than mobility, thus use a
simulator which implements a full IEEE 802.11p stack and
provides realistic fading and shadowing phenomena.

The authors of [14] take one step toward a complete simulator
by extending Veins [10], as we do. The simulator is tightly
tailored to the purposes of the paper, where the Intelligent
Driver Model (IDM) is considered, thus featuring no CACC-
like controllers. Also, the source code is not publicly available.

Another advanced simulator from a vehicle dynamics point
of view is presented by Zhao et al. in [15]. The simulator
is an extension of the commercial tool VISSIM and features
a human-behavioral model, together with ACC and CACC
controllers, and already implements some platooning manage-
ment maneuvers, thus enabling studies of mixed scenarios
with platoon formations and disruptions. The communication
network, however, is not implemented and simulated, and the
tool is not available to the community.

We ourselves started working on the concept of platooning
simulation using the vehicular networking simulator Veins [16].
Yet, this earlier work did not consider the integration of all the
needed controller and maneuver models.

B. Numerical Analyses

The authors of [8] tackle the problem of human-driven
vehicles interference by proposing a self-defensive maneuvering
strategy. To evaluate their proposal, they develop a simulator in
Matlab/SIMULINK, but no details for vehicle or networking
models are given. Similarly, the simulator developed and used
in [17] is based on solving differential equations and focuses on
the vehicle dynamics aspect, while the authors of [18] perform
the evaluation of the proposed CACC using numerical analysis.
As another example, di Bernardo et al. [19] develop a new idea
for a cooperative controller and they first analyze its stability
properties in theory, and then confirm their results by means
of Matlab simulations, but no vehicles or communications are
actually taken into account.

C. Towards an Integrated Approach

The simulators listed in this section provide the ground
for the identification of the requirements for a fully-featured
platooning simulator, which are:
• Openness: It must be available online, free to download

and to modify according to specific purposes;
• Active maintenance: It must be kept up-to-date and it

must improve with time. To this purpose, it is a good idea
to start from a widely used Vehicular Ad Hoc Network
(VANET) simulator which will give a solid base, and the
openness policy will permit the community to identify
potential bugs and improve it;

• Realistic simulation of wireless and road networks: Re-
alism of network simulation is of uttermost importance
when analyzing these systems, as they heavily rely on
communications in order to work. On the other hand,
vehicle dynamics simulation is as important as the network
to understand how a vehicle would behave in a real world
environment;

• Extensibility: Users must easily be able to create new
traffic scenarios or include new vehicle control models;

• Mixed traffic: As the introduction of CACC systems will
be gradual, it is important to be able to simulate scenarios
where automated and human-driven vehicles coexist.

These are the features that characterize PLEXE, the Open Source
platooning simulator we present in this work.



III. SIMULATOR STRUCTURE

Veins extends the OMNeT++ network simulator [20] by
providing a complete vehicular communication stack based
on IEEE 802.11p and tailored channel models, together with
a way of modeling realistic node mobility based on the
road traffic simulator SUMO [21]. For this it couples the
network and the mobility simulator by creating a network
node in OMNeT++ for each vehicle travelling in SUMO. Each
OMNeT++ node is associated with a network stack which
includes an IEEE 802.11p wireless network interface, plus a
beaconing protocol and one or more applications running on
top of it.

Each time a vehicle moves, Veins replicates the movement
in the corresponding OMNeT++ node by updating the mobility
model. The coupling between the network and the traffic
simulation frameworks is done through the TraCI interface
which SUMO exposes. By using this interface, Veins queries
SUMO about current “traffic” status (e.g., number of vehicles,
their position and speed, etc.), and it is able to modify the
traffic dynamics, for instance by changing the route a vehicle
is travelling on, or its acceleration.

PLEXE further extends the interaction through the TraCI
interface in order to fetch vehicles’ data from SUMO to be
sent to other cars, and to be used by the platooning protocols
and applications. Data received by vehicles in Veins can be fed
to the CACCs in SUMO. Platooning protocols as well as the
application logics are realized in the OMNeT++ framework,
while the actuation of the applications decisions together with
part of the application logics are implemented in SUMO.
Figure 1 depicts the schematic overview of the extended
simulation framework.

The efforts to implement a correct platooning model un-
furls in two directions: i) the implementation of platooning
capabilities and elementary maneuvers for vehicles, which
mainly requires changes and extensions in SUMO; ii) the
implementation of protocols to support the applications and
the application logic itself in OMNeT++/Veins plus minor
changes to enhance the bidirectional coupling. The version
of PLEXE we present in this work is based on Veins 2.2 and
SUMO 0.17.1, and it will be constantly upgraded to follow
the evolution of both frameworks.

A. Implementing Platooning Capabilities in SUMO

The implementation mainly refers to a new framework for
car-following, which enables both longitudinal control based on
open or closed-loop control of the acceleration, and a simplified
transversal control (i.e., steering) to appropriately change lanes
and obey platoon dynamics. In particular, this new car-following
model in SUMO makes the longitudinal controllers described in
Section IV and generically called Cruise Control (CC) available
and accessible via TraCI.

SUMO car-following models are conceived to mimic the
behavior of drivers. Common examples are the IDM [22],
or the Krauss [23] car following models. The car-following
model we developed is called CC, which stands for Cruise
Controllers. The user can modify the model to implement other
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Figure 1. Schematic structure of the simulator.

CC or CACC models3. By default, CC uses the Krauss model
to drive the car. This is particularly useful to let the car join
and leave the simulation. For example, the car might enter
the highway using an on-ramp driven by a human. Then, the
automated controllers can be switched on to drive the car until
the desired exit, and can be turned off (giving the control back
to the driver) to exit the highway using an off-ramp.

The CC model in SUMO now includes standard CC/ACC
and one advanced CACC, plus the engine actuation lag (please
refer to Section IV for the details), while another advanced
CACC is under testing and will be available soon. Through the
TraCI interface it is possible to access the model, changing its
behavior and retrieving different information. For the complete
list of functionalities accessible via TraCI, please refer to
the simulator documentation, here we just describe the most
important ones. Concerning the CCs, it is possible to set
desired speed ẋdes, headway time T , and desired distance gapdes.
Obviously, when a CACC system is on, it is possible to feed it
with data exchanged via IVC. Moreover, the interface includes
a method to feed the controller with data about any vehicle in
the platoon, because there exist controllers that can use data
received from arbitrary vehicles to improve their performance
as demonstrated in [19].

At runtime, the user can choose which component is
controlling the car, i.e., the human behavioral model, any
of the CC, ACC, or CACC, or any other controlling model
implemented in the simulator by the user itself. For testing
and safety verification purposes, it is possible to set different

3 For a detailed description of the code and examples on how to modify it,
please refer to the online documentation available at http://plexe.car2x.org.



behaviors for a platoon leader, e.g., a constant acceleration.
For instance, to simulate an emergency braking, we can set
leader’s deceleration to 6 m/s2 until it comes to a complete
stop. Other functionalities include setting a fixed lane to travel
on, or retrieving distance to route end for example.

B. Platooning Protocols and Applications in Veins

Concerning Veins, besides the required changes to the TraCI
interface, we provide a basic network stack where each car
is provided with an IEEE 802.11p network interface card, a
basic protocol for message dissemination, and an application
layer running directly on top of the message distribution. The
idea of the protocol layer is to implement the communication
strategy to share the information among the vehicles in the
platoon. The base class, named BaseProtocol, provides
functionalities to inheriting classes like logging of statistics,
primitives for sending and receiving packets, and loading of
simulation parameters. This way subclasses can focus just on
the implementation of the beaconing strategy itself.

The same principle applies to the application layer, where
BaseApp takes care of loading simulation parameters, or
passing data to the CACC via TraCI. Platooning applications
are in charge, for instance, of deciding if a particular car is the
leader of the platoon or not, on which lane a car should travel,
if a car has to join or leave a platoon, and so on. The highest
layer provides primitives to implement platooning applications,
simplifying their description and implementation. Samples of
already available primitives and platooning applications beyond
car-following are given in Section V.

This stack is provided as a basic example that researchers can
use as a starting point, but it is possible to develop a brand-new
structure and simply use the functionalities provided by the
CC car-following model in SUMO through the TraCI interface.

For what concerns human-driven vehicles, it is possible to
set up standard SUMO traffic flows, which will be part of
the simulation as well. Human-driven vehicles can be used
to create road traffic (i.e., mobility) disturbances, or network
interference by running different applications that compete for
the channel with platooning cars.

IV. CONTROLLER MODELS

In vehicles the independent control parameter for longitudinal
motion is the desired acceleration ẍdes actuated by the car
through the throttle control (if the engine or brakes permit).
The actuation is not immediate because of the lag induced by
power-train dynamics. In PLEXE the actuation lag is modelled
by a first order low-pass filter [24, Chapter 5], which means
that the actual acceleration applied to the car is computed as

ẍ[n] = β · ẍdes[n] + (1− β) · ẍ[n− 1] (1)

β =
∆t

τ + ∆t
(2)

The acceleration at simulation step n is computed based on
the desired acceleration (computed by the controller) and the
acceleration in the previous simulation step. τ is the time
constant (default set to 0.5 s), while ∆t is the SUMO update

step in seconds. The acceleration is in any case limited to
model physical limits: ẍ ∈ [amin; amax].

Controllers can be implemented based on these fundamental
physics of motion control. The first one that PLEXE provides
is the classic Cruise Control (CC) [24, Chapter 5], already
available on several commercial cars, which allows the driver to
select a desired speed automatically maintained by the vehicle.
The control law is defined as

ẍdes = −kp (ẋ− ẋdes) + η (3)

where ẋ is the current speed, ẋdes is the desired speed. kp is
the gain of the proportional controller (default set to 1); η is
a random disturbance taking into account imprecisions of the
actuator and of the speed measure (default set to 0).

Since the only inputs to the CC are the desired and actual
speed, to avoid a collision the driver needs to manually disable
the CC when approaching a slower vehicle. To relieve the
driver from this duty, high-end cars now include a radar or
laser scanner as well. The system detects slower vehicles,
decelerates, and automatically maintains a safe distance. This
is known as Adaptive Cruise Control (ACC) [24, Chapter 6]
and its control law is defined as

ẍi_des = − 1

T
(ε̇i + λδi) (4)

δi = xi − xi−1 + li−1 + T ẋi (5)
ε̇i = ẋi − ẋi−1 (6)

where i identifies the controlled vehicle and i−1 the vehicle in
front. T is the time headway in seconds, ε̇i is the relative speed
between vehicle i and i−1, li−1 is the length of the vehicle in
front and δi is the distance error, i.e., the difference between
the actual distance (xi − xi−1 + li−1) and the desired distance
(T ẋi). The distance T ẋi grows proportionally with speed, and
for both safety and stability reasons the time headway T > 2 ·τ
(see [24] for further details). λ is a design parameter strictly
greater than 0 (default set to 0.1).

When the ACC is selected, the interaction between CC and
ACC is implemented as ẍdes = min(ẍCC, ẍACC). Basically, if
the CC is mandating to accelerate to reach the desired speed,
but the ACC is mandating to slow down because of a vehicle in
front, the car follows the instructions of the ACC. Conversely,
if the ACC is mandating to accelerate to follow the car in front,
but the car has reached its desired speed, the CC will make
the car “detach” from the one in front. Moreover, if there is no
vehicle in front or the distance is higher than 250 m, then the
model considers only the CC, assuming that the radar detects
no car in front.

The controllers introduced so far are useful to complement
human behavioral driving models already present in SUMO,
and to control a platoon leader. However, they are not suited for
followers, since the requirements for a platooning system are
small inter-vehicle distance and string stability. A platooning
controller is string stable when it is able to attenuate the
propagation of motion disturbances at the head of the platoon
toward the tail of the platoon. The class of controllers able
to realize platoon driving is known as Cooperative Adaptive



Cruise Control (CACC). CACCs exploit data that vehicles
share among each other by means of IVC. PLEXE includes two
different CACCs, thus it is an ideal environment to introduce
new ones and compare them with the state of the art.

The first CACC is taken from [24, Chapter 7] and it is
based on classical control theory. It uses data from the leading
and preceding vehicle, and it is capable to maintain a fixed,
speed-independent inter-vehicle distance.

The control law of the i-th vehicle in the platoon is

ẍi_des = α1ẍi−1 + α2ẍ0 + α3ε̇i + α4 (ẋi − ẋ0) + α5εi (7)
εi = xi − xi−1 + li−1 + gapdes (8)
ε̇i = ẋi − ẋi−1 (9)

ẍ0 and ẋ0 are the acceleration and speed of the leader
respectively, while ẍi−1 is the acceleration of the preceding
vehicle. The distance error εi is based on a constant desired
distance gapdes in meters (5 m by default).

The αi parameters in Equation (7) are

α1 = 1− C1; α2 = C1; α5 = −ω2
n (10)

α3 = −
(

2ξ − C1

(
ξ +

√
ξ2 − 1

))
ωn (11)

α4 = −C1

(
ξ +

√
ξ2 − 1

)
ωn. (12)

C1 is a weighting factor between the accelerations of the leader
and the preceding vehicle (default set to 0.5), ξ is the damping
ratio (default set to 1), and ωn is the bandwidth of the controller
(default set to 0.2 Hz); defaults are taken from [25].

The interaction of the CACC with the CC is performed
depending on the distance. If a vehicle is farther than 20 m
from the front one, the policy is the same as for ACC:
ẍdes = min(ẍCC, ẍCACC), otherwise ẍdes = ẍCACC. This way
it is possible to have two different maximum accelerations,
amax,CC for the CC (limited for comfort reasons) and the
absolute maximum and minimum amax and amin representing
the vehicle’s limit.

Currently we are implementing a CACC inspired by [19] and
based on the theory of consensus (the code will be published
when it is stable). This is a completely different control model,
but thanks to the decoupling of the vehicles’ dynamics from
the control algorithms and from the protocols implementation,
the integration of a new control model is easy. We plan to run
a comparison of the two algorithms soon, which would be one
of the very first comparative studies in platooning.

V. PLATOON MANEUVERING

Platooning is not only about automated car following and
string stability. Platoons needs to be created, maintained, mod-
ified and disrupted. A platoon needs to cope with interfering
vehicles, and it may need to overtake a slower vehicle (or
platoon). To make it short, a platoon needs to be able to
behave as a single “flexible” vehicle driven by an intelligent
professional driver. The study, the development, and the testing
of maneuvers are important parts of this field [17], [26]–[28],
and PLEXE provides a framework for the development and
testing of maneuvers and their supporting protocols.
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Figure 2. State machines of the sample join maneuver.

The architecture we choose to support these features is based
on providing protocol primitives (elementary messages like
join request/response) as well as basic application building
blocks that use the primitives to implement simple maneuvers.
We explain this approach by means of an example for the sake
of clarity; the interested reader can find more details, primitives
and elementary maneuvers in PLEXE documentation, and the
performance of more complex maneuvers in [28].

Consider a car that approaches a platoon and wants to join
at the tail. Figure 2 shows the state machines of the protocol
that leading and joining vehicles use in order to coordinate
the maneuver. The other vehicles are not actively involved,
but are informed overhearing the message exchange, so that
the platooning management can take the appropriate measures
and, for instance, inform drivers of the additional vehicle. The
leading and joining vehicles start from the LEADING and IDLE
states respectively. The joiner requests the leader to join the
platoon with the send_req primitive (“join platoon” is a
parameter of the primitive), and moves to the WAIT REPLY
state. The leader answers with the join_req primitive, which
relays information about the platoon (lane, join position, etc.),
and moves to the WAIT POSITION state. The joiner uses such
data to come close to the tail of the platoon, moving into the
join position. Once in position, i.e., at a negotiated distance
from the last car of the platoon, the joiner notifies the leader
that it is able to join. The leader sends back a confirmation and
the joiner switches to CACC, closing its gap to the predecessor
to the platoon inter-car distance. At the end of the procedure,
the leader switches back to the LEADING state, while the
joiner to FOLLOW. The source code of this example can



Table I
NETWORK AND ROAD TRAFFIC SIMULATION PARAMETERS.

Parameter Value

co
m

m
un

ic
at

io
n

Path loss model Free space (α = 2.0)
PHY model IEEE 802.11p
MAC model 1609.4 single channel (CCH)
Frequency 5.89GHz
Bitrate 6Mbit/s (QPSK R = 1/2)
Access category AC_VI
MSDU size 200B
Transmit power 20 dBm

m
ob

ili
ty

Leader’s average speed 100 km/h
Oscillation frequency 0.2Hz
Oscillation amplitude ' 95 km/h to 105 km/h
Platoon size 8 cars
Car length 4m

co
nt

ro
lle

rs

Engine lag τ 0.5 s
Weighting factor C1 0.5
Controller bandwidth ωn 0.2Hz
Damping factor ξ 1
Desired gap gapdes 5m
Headway time T 0.3 s and 1.2 s
ACC parameter λ 0.1
Distance gain kd 0.7
Speed gain ks 1.0
Desired speed ẋdes (followers) 130 km/h

be found under the plexe-1.1-join-example branch
for Veins. The changes to the TraCI interface that PLEXE
provides are sufficient to support these maneuvers, which can
be implemented in Veins without further SUMO modifications.

VI. USE CASES

In this section we provide two sample use cases for the
simulator to demonstrate its versatility. In particular, in the
first example we implement a new fictional controller and
we compare it with the ACC and CACC control algorithms
provided by the simulator. In the second one, we implement a
join maneuver, i.e., a car approaching and joining a platoon of
four cars travelling on the same freeway. The results presented
refer to a single run for demonstration purpose. Runs can be
repeated to obtain statistical confidence.

A. Controller Analysis

We start by describing the fictional controller we implement
for demonstration purpose. For the sake of brevity, we do not
detail all steps that are necessary to implement the user-defined
controller. Such details can be found in the documentation,
while the source code is available in the git repository under
the plexe-1.1-mycc-example branch, both for Veins
and for SUMO.

We define the control law of the custom CACC as

ẍi_des = kd (xi−1 − xi − li−1 − 25 m)+ks (ẋi−1 − ẋi) (13)

We refer to this controller with TESTCC. TESTCC aims at
maintaining an inter-vehicle distance of 25 m and the same
speed of the vehicle in front, and has two design gains kd and
ks. The radar provides the distance to the front vehicle, while
the speed is obtained by means of wireless communication.

We test the performance of TESTCC against ACC and
CACC (Equations (4) and (7) respectively). We run a platoon
of eight cars on a stretch of freeway. The platoon is leaded

by a car which continuously changes its speed in a sinusoidal
fashion. Table I summarizes communication, mobility, and
controllers parameters for the simulations.

Figure 3 shows the speed profile of the vehicles in time for
the different controllers. Thickest and darkest lines represent
vehicles at the head of the platoon, while thinnest and lightest
the ones at the tail.

The first comparison concerns ACC with two different
headway times T . Figure 3a shows the behavior of the ACC
algorithm when violating the string stability constraint, i.e.,
when setting T = 0.3 s. Follower vehicles are not able to
attenuate leader-induced disturbance resulting in an increasing
speed amplitude toward the end of the platoon. Conversely,
when setting T = 1.2 s (Figure 3b), the speed oscillation
is progressively attenuated by the vehicles. We can however
observe a tracking lag by looking at how the speed of one
vehicle is out of phase with respect to the one of its predecessor.
Both phenomenons are reduced to the minimum when using the
CACC (Figure 3c). Thanks to the controller design, each car can
perfectly track leader’s behavior by using its acceleration and
speed. Finally, Figure 3d shows the poor design of TESTCC.
The algorithm is definitely unstable, and vehicles at the end of
the platoon amplify the disturbances in an uncontrolled manner.
As shown, an oscillation of leader’s speed between 95 km/h
and 105 km/h results in speed range exceeding 80 km/h and
120 km/h for some vehicles at the tail.

B. Join Maneuver

We use the same simulation parameters listed in Table I, but
this time the leader drives with a constant speed, the platoon
size is 4, and we test the scenario with the additional CACC
parameters ξ = 2 and ωn = 1 Hz.

Figures 4 and 5 show the maneuver dynamics in terms
of distance, speed, and acceleration, for two CACC settings
(ξ = 1, ωn = 0.2 Hz and ξ = 2, ωn = 1 Hz, respectively).
All figures describe in detail the maneuver in time. In the first
20 s, the platoon joins the simulations and the followers close
their gap to the leader. Then, the joining vehicle enters the
simulation with a speed of 100 km/h. After requesting to the
leader the permission to join, it accelerates up to 130 km/h to
reach the platoon. Once the joiner is roughly 15 m from the
tail, it request the leader to conclude the maneuver and joins
the platoon, speeding up a little to get closer to the last vehicle.

What it is interesting to notice is the change in dynamics
between Figures 4 and 5. In Figure 5, the convergence
is faster, as around 70 s the maneuver concludes, while in
Figure 4 the maneuver ends roughly half a minute later.
Faster convergence might however lead to instabilities or
uncomfortable driving for the passengers. Accelerations and
decelerations in Figure 5 are indeed stronger and even oscillate,
thus requiring a proper parameter study to determine a good
trade-off between convergence time and driving comfort.

This example shows the effectiveness of the simulator for
implementing, simulating, and testing platooning maneuvers
as well as control algorithms, helping researchers to analyze
such systems in a realistic and trustworthy way.
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Figure 3. Vehicles speed for the different implemented cruise controllers showing string-stability properties.

VII. CONCLUSION

We presented a new framework for the simulation of
platooning systems called PLEXE, describing its structure
and the longitudinal controllers it provides (i.e., CC/ACC and
CACC). PLEXE is free to download, easy to customize, permits
the simulation of mixed scenarios, and enables the realistic
simulation of wireless networking and vehicle dynamics. The
paper demonstrates the potential of the PLEXE simulator by
considering two uses cases it can be used for, namely controller
analysis and maneuvers implementation. We believe that PLEXE
can be a valid research tool for the large-scale analysis and the
comparison of automated car-following systems before their
actual deployment.
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