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ABSTRACT
Mobile Ad Hoc Networks (MANETs) have evolved in the
last years into standards in the communication world. By
definition, they do not need any network infrastructure to fa-
cilitate communication between participating nodes. There-
fore, they are dealing with new challenges in the context of
ad hoc routing. In this paper, we present our new imple-
mentation of the ad hoc routing protocol Dynamic MANET
On Demand (DYMO) for the popular discrete event simula-
tion environment OMNeT++. DYMO offers adaptation to
changing network topology and determines unicast routes
between nodes within the network on demand. Based on
the developed model, we performed several simulation ex-
periments to analyze the performance of DYMO with re-
spect to changing network size and traffic conditions. The
implementation of DYMO and the results of the simulation
experiments are described in this paper.

1. INTRODUCTION
Research on Mobile Ad Hoc Networks (MANETs) ad-

dresses many objectives such as scalability and energy ef-
ficiency of ad hoc routing techniques. A number of proto-
cols have been proposed in the last decade [1, 9, 10]. These
routing protocols build the basis for all communications in
MANETs as well as for even more resource restricted net-
works such as Wireless Sensor Networks (WSNs).

The developments of protocols and solutions are cover-
ing multiple problem domains. It turned out that in most
MANET scenarios, reactive routing protocols outperform
proactive approaches to a certain extent. The probably
best known protocol in this context is Ad Hoc on Demand
Distance Vector (AODV) [3, 11, 12]. This protocol searches
routes through the network on demand when data needs
to be transmitted. AODV has been intensively studied in
the last years [6]. Based on all these findings, a new proto-
col has been developed, the Dynamic MANET On Demand
(DYMO) routing protocol [2].

In this paper, we describe a simulation model of DYMO,
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which we developed for the OMNeT++ simulation environ-
ment1. OMNeT++ [16] already provides the framework for
comprehensive simulation setups. A great number of net-
work protocols used in the context of MANETs are available
as simulation models, including the complete TCP/IP stack
and an AODV implementation. Based on the implemented
DYMO model, we performed a comprehensive performance
evaluation to study the effects of DYMO. The results of
this analysis are also provided in this report. Due to space
restrictions, we cannot provide all the results in this paper.
In particular, we have to refer to an earlier technical report
that outlines the performance measures for an older version
of DYMO [7].

2. DYNAMIC MANET ON DEMAND
DYMO is the most recent reactive (on-demand) routing

protocol, which is currently developed in the scope of the
MANET working group of the Internet Engineering Task
Force (IETF). DYMO builds upon experience with previous
approaches to reactive routing, especially with the routing
protocol AODV. It aims at a somewhat simpler design, help-
ing to lower the nodes’ system requirements and simplify the
protocol’s implementation. DYMO retains proven mecha-
nisms of previously explored routing protocols like the use
of sequence numbers to enforce loop freedom. At the same
time, DYMO provides enhanced features, such as covering
possible MANET-Internet gatewaying scenarios and imple-
menting path accumulation.

Besides route information about a requested target, a
node will also receive information about all intermediate
nodes of a newly discovered path. Therein lies a major differ-
ence between DYMO and AODV, the latter of which only
generates route table entries for the destination node and
the next hop node, while DYMO stores routes for each in-
termediate hop. This is illustrated in Figure 1. When using
AODV, node A knows only the routes to B and D after the
route request is satisfied. In DYMO, the node additionally
knows a route to node C.

DYMO is able to set up and maintain unicast routes in
IPv4 and IPv6 network scenarios by using the following
mechanism:

1. In order to discover a new route to a peer, a node trans-
mits a route request message (RREQ) to all nodes in
range. This can be achieved by sending the message
to a dedicated link-local multicast address that is as-

1The model and simulation setups are available online at
http://www7.informatik.uni-erlangen.de/~sommer/
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Figure 1: Routing information dissemination in
AODV and DYMO

sociated with all MANET routers. When an inter-
mediate node receives such an RREQ, it takes note
of previously appended information, deducing routes
to all nodes the message previously passed through.
The node then appends information about itself and
passes the message on to all nearby nodes. This way,
the RREQ is effectively flooded through the MANET
and eventually reaches its destination.

2. The destination responds to the received RREQ by
sending a route reply message (RREP) via unicast
back to the node it received the RREQ from. As with
the propagation of an RREQ, this node again appends
information about itself and takes note of all routing
information contained in the RREP. With the help
of the routing information previously obtained while
forwarding the corresponding RREQ, the intermedi-
ate node is able to send the RREP further back to
the start of the chain, until it eventually reaches the
originating node. This node will now know a route
to the requested destination, as well as routes to all
intermediate nodes, and vice versa.

An implementation may also chose to allow intermediate
nodes the generation of RREPs on behalf of an RREQ’s
destination if a suitable route was already stored.

To efficiently deal with highly dynamic scenarios, links
on known routes may be actively monitored, e.g. by us-
ing the MANET Neighborhood Discovery Protocol [4] or
by examining feedback obtained from the data link layer.
An implementation may also choose to not actively monitor
links, but simply drop inactive routes. Detected link failures
are made known to the MANET by sending a route error
message (RERR) to all nodes in range, informing them of all
routes that now became unavailable. Should this RERR in
turn invalidate any routes known to these nodes, they will
again inform all their neighbors by multicasting a RERR
containing the routes concerned, thus effectively flooding in-
formation about a link breakage through the MANET.

DYMO is also designed with future enhancements in mind.
It uses the Generalized MANET Packet/Message Format [5]
and offers ways of dealing with unsupported elements in a
sensible way.

Regarding related work, several DYMO implementations
in different languages and for different systems exist, most
notably DYMOUM, a GPL implementation for use in both
the Linux kernel and ns-2. Also developed for use in the
Linux kernel are NIST-DYMO (public domain), EK-DYMO
(closed source) and DYMO-AU (GPL, written in LUA and
C). Finally, there exist TYMO for TinyOS (GPL, written

in nesC) and an old implementation of DYMO for OPNET
(proprietary license).

3. THE DYMO SIMULATION MODEL
In this section, we outline the implementation of our sim-

ulation model of DYMO. The model is freely available for
use and distribution under the terms of the GPL.

3.1 Simulation environment – OMNeT++
We modeled DYMO for use as a simulation model in the

OMNeT++ 3.4b2 [16] tool, a simulation environment free
for academic use, and its INET Framework 20061020 exten-
sion, a set of simulation modules released under the GPL.
The OMNeT++ engine runs discrete, event-driven simula-
tions of communicating nodes on a wide variety of platforms
and is getting increasingly popular in the field of network
simulation. It is also part of the SPEC CPU20062 bench-
mark suite released in August 2006.

Scenarios in OMNeT++ are represented by a hierarchy of
reusable modules written in C++. Modules’ relationships
and communication links are stored as Network Description
(NED) files and can be modeled graphically. Simulations
are either run interactively in a graphical environment or are
executed as command-line applications. The INET Frame-
work provides a set of OMNeT++ modules that represent
various layers of the Internet protocol suite, e.g. the TCP,
UDP, IPv4, and ARP protocols. It also provides modules
that allow the modeling of spatial relations of mobile nodes
and IEEE 802.11 transmissions between them.

3.2 Implementation
For the purpose of evaluating the performance of the rout-

ing protocol only, as well as in order to prevent potential side
effects introduced by a transport or network layer, we de-
signed a variant of our DYMO model as a replacement for
all intermediate layers and thus used it to not only forward
RREQs and RREPs, but also to take care of delivering our
application layer’s payload data.

The simulated network nodes utilized in this evaluation
thus contain only three modules for the handling of mes-
sages: Application layer data is sent and received by a traf-
fic generator module, is routed through the DYMO module
and exchanged with other nodes via an IEEE 802.11 mod-
ule provided by the INET Framework. An investigation of
effects introduced by the presence of the INET Framework ’s
transport and network layers has also been conducted, but
is out of scope for this document.

We outfitted our model of DYMO with the capability to
queue payload messages received from the application layer,
should no usable route be known at the time the data is re-
ceived. As mandated, our model will in this case repeatedly
try to establish a route, then dequeue the messages for deliv-
ery to the destination or for destruction if no route could be
found. Regarding route maintenance, we chose the simplest
of the defined models for our implementation. Established
routes are not actively monitored, but just time out if they
are not used.

Two mechanisms are used to limit the range and the fre-
quency of RREQ flooding, respectively. In order to limit the
range, an expanding ring search technique as used by AODV
is used to find the target of RREQs, linearly increasing the

2http://www.spec.org/cpu2006/



Table 1: DYMO Module Parameters
Parameter Value
MIN_HOPLIMIT 5 hops
MAX_HOPLIMIT 10 hops
NET_TRAVERSAL_TIME 1000 ms
ROUTE_TIMEOUT 5 s
ROUTE_AGE_MIN_TIMEOUT 1 s
ROUTE_AGE_MAX_TIMEOUT 60 s
ROUTE_NEW_TIMEOUT 5 s
ROUTE_USED_TIMEOUT 5 s
ROUTE_DELETE_TIMEOUT 10 s
RREQ_RATE_LIMIT 10 s−1

RREQ_BURST_LIMIT 3 RREQs
RREQ_WAIT_TIME 2 s
RREQ_TRIES 3

TTL from MIN HOPLIMIT to MAX HOPLIMIT with each
new try. In order to limit the frequency of RREQs, a token
bucket mechanism is used, with RREQ RATE LIMIT con-
figuring an average rate and RREQ BURST LIMIT setting
the maximum burst size.

The simulation parameters used to configure a DYMO
module correspond directly to the suggested parameter set
and are summarized in Table 1, together with the values
used in our evaluation.

4. PERFORMANCE ANALYSIS
We performed a number of simulation experiments in or-

der to check our implementation of DYMO, as well as to
evaluate the protocol in different MANET scenarios and un-
der different traffic conditions. In the following subsections,
we outline the simulation setup and the selected performance
metrics. Finally, we discuss the obtained performance mea-
sures.

4.1 Simulation setup
For the performance analysis, we simulated a number of

different setups, each consisting of 100 nodes running our
implementation of DYMO, 99 of which continuously gener-
ated packets addressed to one node located in a corner of the
playground acting as a packet sink. We evaluated DYMO’s
performance for the following combinations of scenarios:

1. Nodes were arranged either to form a 10x10 grid or in
a completely random manner.

2. The playground size was adjusted so that the average
distance between neighboring nodes corresponded to
either one hop or three hops (according to the grid
scenario).

3. Nodes sent a new packet either following an exponen-
tial distribution with a mean value of one second or
a mean value of ten seconds, or following a random,
bursty pattern, which consisted of waiting between
zero and five minutes, then sending ten packets spaced
0.49 s apart.

A screenshot for the 10x10 grid scenario illustrating the
one hop distance experiment is provided in Figure 2. All
hosts named host[xy] participate in the application by gen-
erating data messages and transmitting them to the host
named sink, located in the bottom right corner.

Figure 2: Screenshot of a 10x10 grid, one hop setup

Figure 3: Screenshot of a line setup

Additionally, we modeled a network consisting of 11 nodes
arranged in a straight line, with the distance between neigh-
boring nodes corresponding to one hop. This scenario is
shown in Figure 3. Here, ten nodes are periodically gener-
ating payload messages and send them to a single dedicated
sink node located at the end of the line, shown on the left.
The time between two packets is exponentially distributed
with mean values of one second and ten seconds, respec-
tively.

4.2 Analyzed performance metrics and simu-
lation control

Our model is capable of recording a number of statistics,
such as the number of packets sent and received, or message
latencies. Overall behavior of the DYMO routing proto-
col was then examined by recording the following statistical
measures:

• Collisions on MAC Layer

• Loss on MAC and Physical Layer

• Frequency of Route Setups

• Data Packets dropped by DYMO

• Route Discovery Delay

For a more detailed analysis of the spatial load distribu-
tion, we also examined the following measures in dependence
of the recording node’s position:

• number of generated RREQs per second, i.e. not in-
cluding RREQs forwarded on behalf of other nodes

• number of sent DYMO messages per second, i.e. the
rate of RREQs, RREPs and RERRs generated or for-
warded on behalf of other nodes
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Figure 4: Collisions on MAC layer. Scenario: ran-
dom deployment, no mobile nodes
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Figure 5: Loss on MAC and physical layer. Sce-
nario: random deployment
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Figure 6: Frequency of route setups. Scenario: ran-
dom deployment, no mobile nodes
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Figure 7: Frequency of route setups. Scenario: ran-
dom deployment, 10 % mobile nodes

• number of sent payload messages per second, i.e. in-
cluding messages forwarded on behalf of other nodes

All simulations were performed under the control of the
Akaroa2 simulation manager [8, 15], a tool ”aimed at im-
proving the credibility of results from quantitative stochastic
simulation using automated sequential analysis“. For each
simulation setup, multiple simulation runs were conducted
in parallel until the measured data delay per hop could be
determined with Akaroa’s confidence and precision exceed-
ing 95 % and 5 %, respectively.

4.3 Collisions on MAC Layer
In order to make sure that none of the effects discussed

in later sections occurred due to message loss resulting from
collisions in the overloaded shared medium, the first mea-
sures that we evaluated were the number of collisions and
the number of successfully received transmissions, as ob-
served by the MAC layer.

Figure 4 shows the ratio of MAC collisions per link-layer
packet sent for a scenario of non-moving, randomly deployed
nodes. As can be seen, only in the case of high node density
and a mean interval between two application-layer messages
of 10 s exceeds the ratio 20 %. MAC collisions for other sce-
narios were much more seldom, reaching only insignificant

ratios. Similar results were obtained if some nodes moved
according to a random waypoint model and/or if nodes were
arranged in a grid.

4.4 Loss on MAC and physical layer
To determine the amount of messages lost on either the

MAC or the physical layer, e.g. because of node movement,
we recorded the total number of application-layer messages
passed down by the network layer of all nodes to lower layers.
We then compared it with the number of messages received
by the network layer of the sink and thus obtained the ratio
of application messages lost per message generated.

As shown in Figure 5, insignificant message loss with ra-
tios of well below 10 % can be observed in scenarios where
the nodes’ positions remained static. Only in dynamic sce-
narios, as simulated by moving 10 % of the nodes according
to a random mobility model, the percentage of packets lost
rises noticeably.

We observed that in scenarios with high node density,
node mobility had less impact on packet loss, where packet
loss on the MAC and physical layer was approximately cut in
half compared to the low density scenarios. Similar results
were obtained if nodes were arranged in a grid.
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Figure 8: Data packets dropped by DYMO. Sce-
nario: random deployment, 1 s mean inter-packet
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Figure 9: Route discovery delay. Scenario: random
deployment.

4.5 Frequency of route setups
The traffic overhead induced by DYMO was estimated by

relating the number of route request messages to the number
of application-layer messages sent by DYMO via established
routes.

As depicted in Figure 6, the number of route request mes-
sages exchanged per generated application-layer message de-
creased slightly if packets were sent at an interval that could
keep established routes from expiring. In these static scenar-
ios, node density played a minor role insofar as it improved
node connectivity, shortening and stabilizing routes and thus
slightly reducing the frequency of route setups.

However, in the dynamic scenarios shown in Figure 7,
where 10 % of all nodes moved according to a random way-
point model, the higher node density played a key role in
reducing the number of route requests. Here, a larger num-
ber of potential routes to the sink meant a higher probability
that the chosen route included more static nodes, thus re-
ducing the probability of this route breaking if one of the
involved nodes moved out of communication range. Similar
results were obtained if nodes were arranged in a grid.

4.6 Data packets dropped by DYMO
As a measure for DYMO’s aptitude for finding routes,

we compared the amount of data packets dropped at the
network layer with the number of packets requested to be
transmitted to a particular destination.

Figure 8 shows the results of this comparison. Starting
with this figure, mean delays are shown as squares; outliers
are not plotted.

In the stationary scenario, almost no packets got lost due
to problems at the network layer. The few outliers result
from particular nodes being in principle unable to estab-
lish a path towards the sink in the random deployment. In
the mobile scenarios, the probability to successfully set up a
path and to transmit messages essentially relies on the prob-
ability of route failures. Obviously, the low density scenario
tends to show a higher number of route failures compared
to the high density example. Again, similar results were ob-
tained for other inter-packet spacings and/or if nodes were
arranged in a grid.

4.7 Route discovery delay
Another immediate performance measure we evaluated

was the delay between a message being queued for deliv-
ery by DYMO and its removal from the queue when a route
was established. It should be noted that this measure does
not reflect cases where a message was not queued because a
route was already known, neither does it reflect cases where
a message was discarded because no route could be discov-
ered in the time interval set.

As shown in Figure 9, this delay mostly depends on the
length of the path, i.e. in the low-density scenarios much
higher delays can be observed compared to the high-density
scenarios. Similar results were obtained if nodes were ar-
ranged in a grid.

4.8 End-to-end delay
From a user point of view, one of the most important

measures is the delay of messages as observed by the appli-
cation. Figures 10 and 11 show the results of our simulation
experiments. In order to produce comparable results, both
figures depict the mean delay per hop, i.e. the end-to-end
latency divided by the number of hops for this particular
transmission.

Without looking at particular numbers, which mainly de-
pend on the specific network scenario, we need to discuss a
number of effects that became visible in these figures. Con-
sidering the non-mobile case shown in Figure 10 first and
comparing the traffic scenarios with one and ten seconds
inter-packet time, we see that the average per-hop delay in-
creases. This effect can be explained by the route timeouts
used by DYMO in our experiment. In the ten seconds ex-
ample, DYMO has to set up a route for almost each packet
because the available routes have timed out. Thus, each time
an additional route setup delay adds to the packet transmis-
sion delay. Thanks to the route response messages created
on behalf of the destination, the median is equal in both
cases.

Comparing the results for the mobile scenario, the effect of
node mobility seems to be partly reversed, i.e. the measured
delays for the ten seconds case are often smaller compared
to the one second case. Again, this can be explained by
the route timeouts. In the one second example, DYMO
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Figure 10: End-to-end delay. Scenario: random
deployment, no mobile nodes
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Figure 11: End-to-end delay. Scenario: random
deployment, 10 % mobile nodes

will try to re-use already discovered routes more often, but
this time frequently fail because one or more of the involved
nodes have moved out of communication range. Analogous
to the effect discussed in section 4.5, this reversed effect is
more pronounced if node densities are lower, as this means a
higher probability of a mobile node participating in a route.

4.9 Spatial load distribution in the “100 nodes
in a grid” scenario

Aside from the standard performance metrics discussed
above, we analyzed the spatial load distribution in the net-
work in order to get more information about the working
behavior of DYMO and to identify possible bottlenecks. In
Figure 12, the spatial load distributions in low density and
high density scenarios are depicted for the one second and
bursty traffic patterns. Shown in the figure are the follow-
ing three measures: the number of generated RREQs per
second, the number of sent DYMO messages per second, i.e.
the number of RREQ, RREP, and RERR messages, and the
number of sent payload messages per second.

As can be seen in Figure 12(a), the nodes’ number of newly
generated RREQs per second (and, hence, the number of
necessary RREQs per payload message sent) decreases to-
wards the sink. This behavior results from a key property of
DYMO – to learn routes from received RREQs and RREPs.
Therefore, the probability that a node already stored a suit-
able route prior to initiating a data transfer increases for
nodes close to the sink. The same effect can also be observed
in the bursty scenarios depicted in Figures 12(d) and 12(j),
but with additional random variations introduced by less
deterministic behavior. An interesting effect can be ob-
served in the high density scenarios shown in Figures 12(g)
and 12(j): For nodes closer to the sink than its maximum
communication radius, the number of sent RREQs per sec-
ond is actually increasing, as all RREPs of the sink are sent
via unicast and, hence, routes to the sink time out in nodes
frequently “skipped” in the chain of RREPs back to source
nodes.

Plotted in Figure 12(b) is the nodes’ number of transmit-
ted DYMO messages per second. As can be seen, Intermedi-
ate DYMO Router RREP Creation helps to confine RREQs,
preventing flooding both near the sink, where nodes were
frequently able to answer on behalf of it, as well as flooding

RREQs towards the far edges of the network. The effects of
this mechanism are much less pronounced in a high density
scenario, as depicted in Figure 12(h). Just like we observed
in a low density scenario with Intermediate DYMO Router
RREP Creation turned off, DYMO load here is almost uni-
formly distributed with only the relaying of RREPs con-
tributing to a small rise of load towards the sink. Similar,
but much less pronounced effects can be seen in the bursty
scenarios shown in Figures 12(e) and 12(k).

Lastly, Figure 12(c) shows the load distribution of pay-
load data transmission. As all nodes uniformly contribute
to the generation of messages and forward these messages in
a directed way towards the sink node, a permanent increase
of the load towards the sink can be seen. In the high density
scenario shown in Figure 12(i), an interesting effect can be
observed: Nodes with a distance to the sink of exactly its
maximum communication radius relay much more payload
messages than those nearer to it, because they are exactly
one hop away and thus far more probable to be part of the
shortest route between the sink and an arbitrary source, re-
inforced by the fact that responses of these nodes on behalf
of the sink will always contribute to an optimal route. Iden-
tical effects can be observed in the bursty scenarios shown
in Figures 12(f) and 12(l), respectively.

4.10 Spatial load distribution in the “11 nodes
in a line” scenario

In order to verify the results, we created a dedicated sce-
nario, which is commonly used to evaluate the performance
of protocols in wireless ad hoc networks. In this scenario,
11 nodes are placed in a straight line. Ten of these nodes
generate data using the same traffic characteristics as used
in the grid scenarios. The 11th node is used as a sink to
transmit all data messages to. In the presented figures, the
sink node is located on the left.

The measurement results are summarized in Figure 13.
Not displayed are the results of simulations with a mean
inter-packet spacing of 10 s, which yielded identical results.
Plotted in Figure 13(a) is the participating nodes’ number
of generated RREQs per second, i.e. the number of nec-
essary RREQs to set up routes towards the sink. With a
mean inter-packet spacing of 1 s this measure directly cor-
responds to the average number of necessary RREQs per
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Figure 12: Spatial load distribution in the 10x10 grid by packet spacing (1s, bursty) and density (low, high)
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payload message sent. It can be seen that the number of
RREQs increases with the distance to the sink. This vali-
dates the results from the grid scenario. Depending on the
data rate, routes may time out and additional RREQs are
necessary if the inter-packet time is greater than the route
timeouts used by DYMO.

Figure 13(b) shows the number of all DYMO messages
transmitted, i.e. the number of RREQs, RREPs and RERRs
either generated or forwarded on behalf of other nodes. As
in the 10x10 grid scenarios, Intermediate DYMO Router
RREP Creation helped confine the flooding of RREQs and
thus greatly reduced the number of relayed DYMO mes-
sages near the sink and at the far edge of the network.
Again, when Intermediate DYMO Router RREP Creation
was turned off, an almost uniform distribution of relayed
DYMO messages was observed.

Figure 13(c) shows the number of payload messages gen-
erated and forwarded by all DYMO nodes in the network.
As expected, this number linearly increases towards the sink
node. Again, the results from the grid scenario, where num-
bers increased quadratically, are supported by this measure.

5. CONCLUSION AND FUTURE WORK
DYMO is one of the most recent IETF standardization

efforts in the MANET community. During the last years,
the standard has been updated and changed several times
in order to improve the protocol and to make it better con-
figurable depending on the particular use case. This requires
intensive simulation efforts to study the effects of the result-
ing protocol behavior.

In this work, we presented and discussed our implementa-
tion of the DYMO ad hoc routing protocol for OMNeT++
and the INET Framework, and we commented on design
choices we made in the process. The implementation is
freely available for use and distribution under the terms of
the GPL. We moved on to demonstrate how our model can
be used to evaluate DYMO’s performance in a number of
different simulation setups and presented the results, which
we obtained in these simulations. Compared to earlier mea-
sures using an older definition of DYMO, it can be seen that
the protocol behavior has been improved (for more details,
please refer to the corresponding report [7]). The reason
is the consequent incorporation of advantageous principles
from other approaches such as AODV.

We are currently using this implementation of DYMO,
as well as a version which uses the full stack of the Inter-
net protocol family, to evaluate the applicability and per-
formance of DYMO in MANET and especially in Vehicular
Ad Hoc Network (VANET) scenarios [13,14]. Especially for
application in VANETs, the demands on the path setup per-
formance and the adaptivity to dynamic topology changes
proved challenging for ad hoc routing techniques such as
DYMO.

6. REFERENCES
[1] K. Akkaya and M. Younis. A Survey of Routing

Protocols in Wireless Sensor Networks. Elsevier Ad
Hoc Networks, 3(3):325–349, 2005.

[2] I. Chakeres and C. Perkins. Dynamic MANET
On-Demand (DYMO) Routing. Internet-Draft (work
in progress) draft-ietf-manet-dymo-11.txt, IETF,
November 2007.

[3] I. Chakeres and E. M. Royer. AODV Routing Protocol
Implementation Design. In International Workshop on
Wireless Ad Hoc Networking (WWAN), Tokyo, Japan,
March 2004.

[4] T. H. Clausen, C. Dearlove, and J. W. Dean. MANET
Neighborhood Discovery Protocol (NHDP).
Internet-Draft (work in progress)
draft-ietf-manet-nhdp-05.txt, IETF, December 2007.

[5] T. H. Clausen, C. M. Dearlove, J. W. Dean, and
C. Adjih. Generalized MANET Packet/Message
Format. Internet-Draft (work in progress)
draft-ietf-manet-packetbb-11.txt, IETF, November
2007.

[6] S. R. Das, C. E. Perkins, and E. M. Royer.
Performance Comparison of Two On-demand Routing
Protocols for Ad Hoc Networks. In 19th IEEE
Conference on Computer Communications (IEEE
INFOCOM 2000), pages 3–12, Tel Aviv, Israel, March
2000.

[7] I. Dietrich, C. Sommer, and F. Dressler. Simulating
DYMO in OMNeT++. Technical Report 01/07,
University of Erlangen, Dept. of Computer Science 7,
April 2007.

[8] G. Ewing, K. Pawlikowski, and D. McNickle. Akaroa2:
Exploiting Network Computing by Distributed
Stochastic Simulation. In European Simulation
Multiconference (ESM 1999), pages 175–181, Warsaw,
Poland, 1999.

[9] X. Hong, K. Xu, and M. Gerla. Scalable Routing
Protocols for Mobile Ad Hoc Networks. IEEE
Network, 16:11–21, July/August 2002.

[10] A. Iwata, C.-C. Chiang, G. Pei, M. Gerla, and T.-W.
Chen. Scalable Routing Strategies for Ad Hoc
Wireless Networks. IEEE Journal on Selected Areas in
Communications, Special Issue on Ad-Hoc Networks,
17(8):1369–1379, August 1999.

[11] C. E. Perkins, E. M. Belding-Royer, and S. R. Das.
Ad hoc On-Demand Distance Vector (AODV)
Routing. RFC 3561, July 2003.

[12] C. E. Perkins and E. M. Royer. Ad hoc On-Demand
Distance Vector Routing. In 2nd IEEE Workshop on
Mobile Computing Systems and Applications, pages
90–100, New Orleans, LA, February 1999.

[13] C. Sommer, I. Dietrich, and F. Dressler. Realistic
Simulation of Network Protocols in VANET Scenarios.
In 26th IEEE Conference on Computer
Communications (IEEE INFOCOM 2007): Mobile
Networking for Vehicular Environments (MOVE
2007), Poster Session, pages 139–143, Anchorage,
Alaska, USA, May 2007. IEEE.

[14] C. Sommer and F. Dressler. The DYMO Routing
Protocol in VANET Scenarios. In 66th IEEE
Vehicular Technology Conference (VTC2007-Fall),
pages 16–20, Baltimore, Maryland, USA,
September/October 2007. IEEE.

[15] S. Sroka and H. Karl. Using Akaroa2 with
OMNeT++. In 2nd International OMNeT++
Workshop, Berlin, Germany, January 2002.

[16] A. Varga. The OMNeT++ Discrete Event Simulation
System. In European Simulation Multiconference
(ESM 2001), Prague, Czech Republic, 2001.


