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Abstract We describe Veins, an Open Source model library for (and a toolbox
around) OMNeT++, which supports researchers conducting simulations involving
communicating road vehicles – either as the main focus of study or as a component.
Veins already includes a full stack of simulation models for investigating cars and
infrastructure communicating via IEEE 802.11 based technologies in simulations of
Vehicular Ad Hoc Networks (VANETs) and Intelligent Transportation Systems (ITS).
Thanks to its modularity, though, it can equally well be used as the basis for modeling
other mobile nodes (like bikes or pedestrians) and communication technologies (from
mobile broadband to visible light). Serving as the basis for hundreds of publications
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and university courses since its beginnings in the year 2006, today Veins is both one
of the oldest and most widely used tools in this domain.

In this chapter, we give a brief overview of recent developments regarding the
architecture, simulation models, and supporting code of Veins; we also present two
practical use cases, discuss two extensions, and conclude with a brief discussion of
using Veins as a virtual appliance. Code examples and tutorial simulations can be
downloaded from http://veins.car2x.org.

1 Introduction

Veins [56] is a model library for (and a toolbox around) OMNeT++, which supports
researchers conducting simulations involving communicating road vehicles; either
as the main focus of study (such as Vehicular Ad Hoc Networks – VANETs) or as a
component (such as Intelligent Transportation Systems – ITS). It is distributed as
Open Source software; as such, it is free to download, adapt, and use.1

The model library includes a full stack of simulation models for investigating
communicating vehicles and infrastructure; as of Veins 4.7 predominantly cars and
trucks using WLAN-based technologies. For this, Veins includes a sophisticated
model of IEEE 802.11 MAC layer components [15] used by standards such as IEEE
WAVE (of which a simple simulation model is included), ETSI ITS-G5 (as provided
by, e.g., Artery [43] which is described in Chapter {12}), or ARIB T-109 [23].
Because Veins is a modular framework it can equally well be used as the basis
for modeling other mobile nodes such as pedestrians, bikes, trains, and Unmanned
Aerial Vehicles (UAVs) – or for other communication technologies such as LTE [21]
(Section 4.1) and Visible Light Communication (VLC) [37].

The history of Veins goes back to early 2006, the first public release being an
extension for the INET Framework version 2006-10-20. Because of limitations in
the fidelity of wireless channel modeling at the time, for its 1.0 release Veins was
ported to be an extension of MiXiM (an alternative OMNeT++ model library for
wireless channel modeling) instead. Veins was then increasingly augmented with
own models, e.g., of IEEE 802.11p, IEEE 1609.4, and WAVE, which would later
be re-factored all the way down to the physical layer for the 2.0 release. As more
refactoring and rewriting was taking place in the channel models, Veins 3.0 became a
proper fork of MiXiM, but was kept compatible with mixed simulations incorporating
models from the INET Framework. Up to the current 4.7 release, Veins was then
continuously streamlined and augmented with more and more of the aforementioned
models specific to communicating road vehicles. This release is compatible with
OMNeT++ 5 (up to the current 5.4.1) and SUMO 0.32.0 (the latest release of SUMO;
please refer to Section 2.1 for details on its role for Veins). A full compatibility list is
available from the Veins website.

1 http://veins.car2x.org/
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Veins has become well-established in the domain of VANETs and ITS. It is em-
ployed by both academia and industry around the globe. It serves as the basis of
hundreds of publications and contributed to the standardization process of Inter-
Vehicle Communication (IVC). Common fields of application include channel access
control [14, 57], safety applications [26, 54], privacy [17] and security [44], platoon-
ing [48], communication with traffic lights [13], electric vehicle operation [3], as well
as traffic optimization [65]. For some of these uses cases there exist dedicated exten-
sions for Veins such as Prext for location privacy [19], Plexe for platooning [50], an
extension to incorporate a real world driving simulator [2], or a simulation framework
for electric vehicles [3].

In this chapter, we give a brief overview of recent developments regarding the
internals of Veins (bi-directional coupling, communication stack, antenna character-
istics, unit testing, and timer management; Section 2), present two practical use cases
(platooning and intersection collision avoidance; Section 3), and conclude with a
brief discussion of two extensions (Veins LTE and veins_inet) as well as using Veins
as a virtual appliance (Section 4).

2 Internals

In this section, we explain how the bi-directional coupling works (Section 2.1) and
give details on the implementation of the IEEE 802.11p-based communication stack
(Section 2.2). Discussion on Veins internals continues with the modeling of antenna
characteristics (Section 2.3), followed by a section on how unit testing can help
in the development of new simulation models (Section 2.4) and simplified timer
management (Section 2.5).

2.1 Architecture and Bidirectional Coupling

Other than might be expected, Veins does not include custom mobility models of
road vehicles. Rather, it has simulations establish a connection to a dedicated road
traffic simulator which is running as a separate process, as illustrated in Figure 1.

This way, Veins can benefit from the years of research and development by domain
experts which have created fully-featured tools for road traffic simulation. The road
traffic simulator that Veins was designed to interoperate with is SUMO,2 (though, in
theory, any simulator supporting the TraCI simulator coupling interface can be used).

SUMO can simulate medium to large road networks of cities, urban areas, high-
ways, and freeways. On those, it can simulate the movement of road vehicles like cars
and trucks, of scooters and bicycles, of pedestrians, and of trains. SUMO supports
a wide range of different mobility models (from idealized, lane-discrete models to

2 http://sumo.dlr.de/
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Fig. 1 High-level architecture of Veins.

sub-lane models of mixed car/scooter traffic), a set of different intersection controllers
(from simple right of way to demand-actuated traffic lights), and a wide range of road
network input formats (from OpenStreetMap and TIGER to proprietary, specialist
GIS formats).

By default, mobility information is polled from SUMO at fixed intervals of, e.g.,
100 ms, though adaptive polling is equally well supported by the interface. Execution
of the OMNeT++ simulation pauses while SUMO computes mobility information
for the desired point in time. The performance impact of this is, however, minimal as
SUMO is designed to simulate at least an order of magnitude more mobile nodes than
can be afforded in a highly detailed wireless network simulation. As a consequence,
in a reasonably complex wireless network simulation, only fractions of percents of
simulation time are spent calculating and communicating mobility information.

Whenever SUMO simulates the departure of a mobile node, Veins creates a
dedicated simulation module in OMNeT++. Then, as the mobile node moves in
SUMO, Veins keeps the corresponding OMNeT++ module updated wrt. its position,
heading, and speed (along with the status of turn signal indicators and similar
miscellaneous information). Similarly, when SUMO simulates the mobile node
arriving at its destination, Veins removes the corresponding OMNeT++ module
from the simulation. This way, Veins couples node mobility in OMNeT++ to that in
SUMO.

This coupling is bi-directional: in addition to the OMNeT++ simulation evolving
as dictated by the SUMO simulation, the OMNeT++ simulation can influence the
simulated road traffic in SUMO, for example, to have cars choose a different route to
their destination in response to received traffic information – or to have a car perform
an emergency brake in response to received warnings. This is done by calling meth-
ods of the TraCICommandInterface and component class instances associated with
each mobile node. They are available by obtaining a pointer to the mobility mod-
ule via TraCIMobilityAccess().get(getParentModule()) and call-
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ing its getCommandInterface() or getVehicleCommandInterface()
method from any simulation model of a mobile node that contains a mobility model
of type TraCIMobility (a requirement for mobile nodes managed by Veins).
These interfaces offer a wealth of methods – from the simple, like getRoadId and
newRoute (for vehicles) to the complex, like setProgramDefinition (for a
traffic light). Details on this concept are available in the literature [56].

Programmatically, the coupling is performed by instantiating a simulation mod-
ule of type TraCIScenarioManager, which will take care of bi-directionally
coupling OMNeT++ and SUMO. However, this needs the user to manually run one
SUMO simulation for every OMNeT++ simulation. As an alternative, to ease the man-
agement of two simulators running in parallel, Veins also includes tools to automati-
cally set up and run SUMO simulations. This can be done by instantiating a subclass
of TraCIScenarioManager called TraCIScenarioManagerLaunchd. It
expects the user to have run a command line utility, sumo-launchd.py, which waits
for incoming network connections from an OMNeT++ simulation and launches one
instance of SUMO for each simulation and proxies the connection. Alternatively,
another subclass called TraCIScenarioManagerForker can be employed,
which will directly run a local instance of SUMO when needed. All of these coupling
variants are included with Veins.

What is not included with Veins are road traffic scenarios to generate the SUMO
traffic from.

While, these days, road network data and building positions are easy to come
by (thanks to open data sources), information about traffic demand (that is, how
typical traffic moves through the road network), traffic light timings, or meta-data
like bus and train schedules are much harder to come by. In the early days of VANET
simulation, road traffic scenarios has thus often been generated synthetically, e.g.,
modeling an ideal Manhattan Grid of roads. This had the obvious downside of
requiring a lot of skill on the part of the researcher generating the road traffic scenario
(lest the simulation test the system under study in unrealistic conditions).

A better choice, therefore, is picking one of the well-tested road traffic scenarios
that have been made available more recently. Examples for the SUMO road traffic
simulator are:

• The Bologna “Pasubia” and “Acosta” scenarios [6], depicted in Figure 2a, feature
9k trips each on two areas of 2 km × 1 km each.3 They can be run individually
or as one bigger road traffic scenario and feature traffic driving in a small part of
the city core of Bologna, though care must be taken as no building positions are
included with the scenario.

• The Bologna “Ringway” scenario [4], depicted in Figure 2b, features 22k trips
on an area of 4 km × 3 km.4 It focuses on road traffic on an arterial road running
around a city center. Like the Pasubia and Acosta scenarios, no building positions
are included with the scenario.

3 http://sourceforge.net/projects/sumo/files/traffic_data/scenarios/Bologna_small
4 http://www.cs.unibo.it/projects/bolognaringway/
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(a) Bologna: Pasubia and Acosta (b) Bologna: Ringway

(c) Luxembourg: LuST (d) Monaco: MoST

Fig. 2 Selection of existing openly available scenarios for SUMO.

• The Luxembourg “LuST” scenario [9], depicted in Figure 2c, features 288k trips
on an area of 14 km × 11 km.5 It is the largest and most complete scenario to date
and includes a full day of mobility data for a complete city, including the positions
of buildings and parking lots.

• The Monaco “MoST” scenario [10], depicted in Figure 2d, features 18k trips
on an area of 10 km × 7 km.6 Still under development, it focuses on multi-modal
traffic – also encompassing information regarding public transport, bicycles, and
pedestrians.

2.2 The MAC and PHY Layer

One of the core features of Veins is the detailed modeling of the lower layers of
Inter-Vehicle Communication (IVC). For the evaluation of most IVC applications and
networks, a detailed packet-level simulation using accurate models of the evaluated
technology is required [18]. For vehicular networks, the technology in question is

5 https://github.com/lcodeca/LuSTScenario
6 https://github.com/lcodeca/MoSTScenario
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Fig. 3 The IEEE WAVE stack and its representation in Veins.

often IEEE WAVE (or ETSI ITS-G5 in Europe). The core of this family of standards
is the IEEE 1609.4 multi-channel operation using the IEEE 802.11p MAC and PHY
layer. An overview of the stack is given in Figure 3a: While it is possible to implement
and integrate each of these layers and standards, Veins puts a focus on the lower layers
as these are decisive for the actual channel access and transmission of packets [14].
Other simulation models (not included with Veins, but publicly available, such as
ARIB T-109 [23]) can build on this foundation if additional protocol layers of the
various protocol stacks of ITS protocols around the world are to be modeled as well.

Figure 3b shows the representation of the stack within Veins. Each node, be it
a vehicle, a road-side unit or even a pedestrian or cyclist making use of wireless
communications would need to consist of at least an 802.11p network interface card
to be able to communicate with other devices. Higher layers (in some stacks: the
application layer) are directly connected to this network interface card which itself is a
compound model consisting of the MAC Layer and the physical layer. This results in a
simple APP-MAC-PHY architecture for each node in Veins. The veinsmobility
is responsible for updating the position of the vehicle (see Section 2.1). In the case
of a road-side unit, the mobility would be a constant BaseMobility.

In OMNeT++, each module can exchange messages with other modules if they
are connected. These messages can be of any type inheriting from cMessage*, that
is, just plain messages or (encapsulated) packets of any given message format (e.g.,
Wave Short Messages – WSMs or Wave Service Advertisements – WSAs). Inside a
node, messages can either be “normal” messages that might be forwarded to layers
above or below, or control messages to trigger a certain action in the receiving layer.
Depending on the type, a different function will be called in the receiving layer. As
can be seen in the figure, the physical layer is connected only to the MAC layer and
to the outside world.

In the following sections, we will discuss how messages are generated, processed,
forwarded and received.
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2.2.1 Medium Access Control and Upper Layers

The Medium Access Control layer in the simulation should represent the simulated
system as close as possible (for example, evaluating an IEEE 802.11p system for IVC
using a model for IEEE 802.11b can give misleading or even wrong results) [18, 27].
Veins comes with a detailed IEEE 1609.4 and IEEE 802.11p MAC layer that supports
multi-channel operation, channel switching (alternate access), transmission of unicast
and broadcast messages, and an IEEE 802.11e Enhanced Distributed Channel Access
(EDCA) implementation with four different access categories [15]. For a detailed
description we refer the reader to IEEE 802.11e and IEEE 802.11p [18, 15, 53] and the
actual standardization documents [25] and [24]. The level of detail in Veins’ MAC and
PHY layer implementation allows researchers to conduct various simulation studies,
e.g., comparing wireless network performance [14, 57], studying the applicability
of the wireless network for vehicular cooperative safety [26] (Section 3.2) or the
analysis of platoons [50] (Section 3.1).

The implementation in Veins follows a different paradigm compared to most
other OMNeT++ frameworks. The behavior of the MAC layer can be specified
in the form of a state machine which is a useful method to understand as well as
implement the system. Transitions between states are triggered after, e.g., a timeout
has expired, the backoff counter has reached zero, a packet arrived, and so on. Indeed,
an implementation might choose to directly follow the state diagram. However,
the MAC layer has several properties which make such an implementation hard to
maintain and read: packets can arrive from an upper layer regardless of the state
the MAC layer is in, multiple timers can run in parallel (e.g., for each of the EDCA
queues as well as the channel switching time), and the multi-channel operation would
require two independent state machines. Not only does this lead to plenty of nested
if statements in each function (to check which state the system is currently in)
which makes extending and understanding the code base challenging, it also has
an impact on performance as multiple timers have to be managed in parallel, i.e.,
inserted into and removed from the event queue.

This prompted the design decision to not rely on a state machine implementation
but follow a different, more efficient approach: The MAC layer always tracks the
time at which it can send the next packet, instead of tracking all the different intervals
such as interframe spaces or backoff times, separately. When an event occurs that
affects this time, e.g., the channel turns busy or a new packet in a higher priority
queue arrives from the upper layer, the timer is canceled or rescheduled and the
backoff counters for each EDCA queue are updated. When the channel turns idle
again, the time is recomputed and the timer is scheduled again. The result of this
design is that Veins will only use one single timer (nextMacEvent) when using a
single channel MAC layer with broadcast messages only, which is a rather common
setup for vehicular networks. Multi-channel operation and unicast packets require
additional timers.
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Transmitting a packet

The MAC layer expects a WaveShortMessage from higher layers (e.g., the
application layer) with attached information on which channel it should be sent
and a user priority which will be mapped to an EDCA queue. The packet will be
queued accordingly and the nextMacEvent timer will be updated if necessary.
If the channel is busy and the respective EDCA queue has a backoff counter of 0
with the newly arrived packet at the front of the queue, then a backoff procedure is
invoked according to the standard.

The core of the MAC layer is the startContent function which models the
start of contention for the channel and returns the time the next packet can be sent.
It iterates through each of the EDCA queues and computes this time based on the
queue-specific interframe time (AIFSn × slot length + SIFS), the current backoff

counter, and the last time the channel went idle. If the channel was idle long enough
when a new packet arrives from the upper layer, the packet will be sent at the next
slot boundary. When the timer expires, the MAC layer sets the channel to busy
and calls the stopContent function. In this function, the backoff counters of
the remaining EDCA queues are updated and Transmit Opportunitys (TXOPs) for
ready-to-transmit queues are generated. Then initiateTransmit function is
invoked which is responsible for returning the actual packet that is supposed to be
sent. In the case of an internal collision, that is, when there are more two or more
packets ready, the lower priority queues will be sent into backoff. The winning packet
will be encapsulated with the corresponding MAC header and controlInfo (containing
transmit power and data rates), and if there is enough time left in the current control
or service channel interval, handed to the PHY layer. The stopContent function
is also invoked when the channel turns busy due to an external transmission. In this
case no TXOPs are generated, and the nextMacEvent timer is canceled.

Receiving a packet

The role of the MAC layer in the reception of a packet is straightforward. If the
PHY layer sends up a Mac80211Pkt, the MAC will check whether the destination
address is the layer 2 broadcast address or whether it matches its own MAC address.
If that is the case, the packet will be decapsulated and the WaveShortMessage
will be handed to the application layer. When dealing with unicast transmissions,
the received packet can be an ACK packet. The reception of an ACK packet marks
the successful transmission of a unicast packet, causing the MAC layer to remove it
from the respective EDCA queue. If the MAC layer is expecting an ACK packet but
has received another packet, then the originally sent packet has to be retransmitted.

The PHY layer also informs the MAC layer of several other events such as
successful or unsuccessful reception of a packet, the channel turning busy or idle,
erroneous decoding of a packet and so on. This is achieved by means of control
messages. Veins collects various statistics about received packets and failures (split
by broadcast and unicast and by cause of loss) as well as about internals of the state
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machine (like how busy the channel was), giving the researcher methods to evaluate
the underlying network in great detail.

2.2.2 The Physical Layer and the wireless channel

The benefit of packet level simulation is the capability to (more or less) realistically
determine for each packet if it can be successfully received. There are several factors
affecting the decoding of a packet: the position in space of sender and receiver, the
antenna characteristics (see Section 2.3), whether there is an obstacle blocking the
line of sight, and interference from other transmitting nodes. While Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) significantly reduces the
chance of two nearby nodes (i.e., they can hear each other) sending at the same time,
it does not offer a solution to the hidden terminal problem [22]. All these effects can
be captured by Veins. In this section, we will outline the functionality of the physical
layer.

The described models of the Physical Layer and the wireless channel in Veins
are currently based on a fork of MiXiM [64], which models radio signals as generic
n-dimensional objects (power levels expressed in, e.g., time and frequency) and
provides a math toolbox to work with them. It should be noted that, while this is the
most flexible way of modeling radio signals, it is also computationally expensive.
Thus, Veins has been updated to use a more specific abstraction of radio signals,
tailored to the feature set used in common vehicle to vehicle communication (e.g.,
forcing any radio signal to always have a time and a frequency dimension – never
more, never less) and optimized for efficiency. While this has the obvious drawback
of not being able to model radio signals in dimensions other than time and space,
these adaptations can allow simulations to run faster – in some cases up to two orders
of magnitude. While this functionality is not yet available in Veins 4.7, it is available
on Github and will be integrated into upcoming releases of Veins.

Analogue Models

The connection manager of OMNeT++ maintains a connectivity map to be able to
hand transmitted messages to the receiving nodes. Every node inside a configurable
interference range of a transmitting node will be handed a copy of the transmitted
packet. Determining whether this packet is successfully received then lies within
the responsibility of the node itself. The setting of an interference range is purely
an optimization: it defines an artificial range beyond which no radio transmission
needs to be considered as interfering. Naturally, it should be set much larger than the
maximum range of any successful transmission, as also packets that have a too low
receive power (or Received Signal Strength (RSS)) to be decoded can still affect the
successful reception of other packets.

The connection manager will hand an airframe at least twice to the PHY layer via
the handleMessage function: when the receiving starts, and when it ends. The
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Fig. 4 Analogue models and their effect on the received signal strength (RSS) compared to real-
world measurements.

first thing that has to be computed is the actual receive power of the frame as this
determines whether the channel turns busy or remains idle. This is done by applying
the antenna gains (Gt,Gr) and iteratively applying all the configured loss models L
in the filterSignal function (see Eq. 1).

Pr = Pt + Gt + Gr −
∑

L (1)

Common deterministic loss models include the freespace path-loss model and the
two-ray interference path-loss model [52] that considers the reflected signal from the
road that can cause cancellation and amplification of the received signal. A detailed
explanation of these models can be found in [16]. To account for fast fading effects,
Veins can make use of Nakagami-m fading which is a probabilistic method to reflect
multi-path propagation in urban environments [59].

The effect of obstacles (e.g., buildings in the scenario description file) is also
accounted for by the use of a loss model. Assuming each obstacle is a polygon, then
the receive power is reduced based on the number of edges n (e.g., walls) the signal is
intersecting and the distance m covered inside of polygons (e.g., inside the building).
These values are weighted using parameters β and γ which were calibrated using real
world measurements (see Eq. 2). They can be changed according to the material of
the obstacle, e.g., brick, concrete, etc.

Lbuild = β · n + γ · m (2)

Listing 1 shows how to configure a simple chain of analogue models (an XML
configuration set as the physical layer’s analogueModels parameter). In this
configuration, each received signal is first passed through a free-space path loss
model, then through an obstacle shadowing model.



12 C. Sommer, D. Eckhoff, A. Brummer, D. Buse, F. Hagenauer, S. Joerer and M. Segata

Listing 1 config.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <AnalogueModels>
4 <AnalogueModel type="SimplePathlossModel">
5 <parameter name="alpha" type="double" value="2.0"/>
6 <parameter name="carrierFrequency" type="double" value="5.890e+9"/>
7 </AnalogueModel>
8 <AnalogueModel type="SimpleObstacleShadowing">
9 <parameter name="carrierFrequency" type="double" value="5.890e+9"/>
10 </AnalogueModel>
11 </AnalogueModels>
12 </root>

A comparison of the different models as well as their ability to reproduce real-
world measurements [55] is given in Figure 4.

The Decider

Once all loss models have been applied, the airframe is handed to the Decider
which is an outsourced class that determines whether packets can be successfully
decoded. If the received power is below the configurable Clear Channel Assessment
(CCA) sensitivity, this packet is unable to set the channel to busy. The MAC layer
will not be notified. If the packet is above the CCA threshold, the decider checks
whether the node is already transmitting or receiving another packet. In both cases
the packet will fail to decode.

The processSignalEnd function in the decider is called when the connection
manager hands the airframe to the physical layer the last time. It is the task of the
decider to finally determine whether the packet is decodable. To this end, it first has
to compute the Signal-to-Interference-plus-Noise-Ratio (SINR) as

SINR(i) =
Pi

N +
∑

i, j P j
; (3)

the receive power of the packet in question i is divided by the power of all interfering
packets j and the background noise N. Once the SINR has been obtained, it can be
fed to a bit error model. Depending on the modulation scheme (e.g, BPSK, QPSK,
QAM), a different equation is applied to calculate the probability of one bit being
decoded erroneous. Bit error rates for header and payload are computed separately
and then applied to the packet length to derive a packet error rate. Two randomly
drawn numbers then decide whether the header and the payload can be decoded
successfully.

The packet is handed to the MAC layer or, in the case of an error, a control
message is sent.
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Listing 2 config.xml (part two)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <Decider type="Decider80211p">
4 <parameter name="centerFrequency" type="double" value="5.890e9"/>
5 </Decider>
6 </root>

Listing 2 shows how to configure the decider model (an XML configuration set
as the physical layer’s decider parameter). Each received signal is then passed
through this chain of models.

2.3 Modelling Antenna Patterns

Antennas are an integral part of wireless communications as they constitute the
interface between the respective radio device and the transmission medium air. Yet,
despite the multitude of detailed models for the physical and MAC layers described
before, the impact of antenna patterns has not been taken into account in VANET
simulation for a long time – even though the gain (or loss) of an antenna can critically
influence the receive power and thus decodability of a sent message. This dependence
is already indicated by Equation 1 (page 11) with the terms Gt and Gr being related
to the sender’s and receiver’s antenna gain, respectively.

Early work on the impact of antenna patterns on vehicle-to-vehicle communica-
tion [12] demonstrated that the vast majority of messages were received either from
the front or from the rear direction of the vehicle. It also demonstrated that, as a con-
sequence, the overall number of received beacons in a typical cooperative awareness
simulation was decreased by up to 20 % compared to simulations neglecting antenna
influence (i.e. assuming isotropic radiators) – and time to stop differed substantially
among antenna types.

A highly configurable model for the consideration of antenna patterns has been
added to the Veins framework as of version 4.5.

The power of the sent or received signal depends on several aspects, first of all the
type of antenna in use. In the case of an ideal, isotropic antenna, the transmit power
is radiated equally in all directions. Omnidirectional antennas, e.g., monopoles, emit
the signal power equally in a certain plane. Another category are highly directional
antennas, which concentrate the power in one or a few selected directions. These
differences in power are usually stated as a dBi value, that is, on a logarithmic scale
with respect to an ideal, isotropic radiator.

In the context of vehicular networks, radiation characteristics are further influ-
enced by the vehicles themselves. An important factor is the mounting location,
which might be on the roof, at the front, at the rear, at the side mirrors, or even under
the car. Exemplary patterns as measured in [34, 31] are depicted in Figure 5. For
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Fig. 5 Azimuth and elevation planes of exemplary vehicular antenna patterns. The gain is given in
dBi.

example, the radiation pattern of a vehicle with patch antennas on the side mirrors
(see Figure 5c) exhibits a substantial prevalence towards the front of the car. More-
over, material properties of parts surrounding the antenna can influence the power
of a transmitted or received signal. A distinct example is shown in Figure 5a. This
radiation pattern is the result of a study by Kwozcek et al. [34] who investigated the
consequences of an antenna being mounted next to a panorama glass roof. As can be
seen, this leads to a substantial attenuation of up to 20 dBi towards the front of the
vehicle as the signal tends to get reflected within the glass roof.

It is quite obvious that such an influence on the signal power can make all the
difference when deciding on the decodability of a packet, which is why the support
for antenna patterns has been added to the Veins framework.

For this purpose, an object of the newly introduced Antenna class is assigned
to every vehicle (or more general: to every module containing a radio). For this, an
Antenna member is added to the BasePhyLayer class, which itself is present in
every module capable of wireless communication (see Figure 6). The Antenna class
can be seen as the superclass for all kinds of specialized antenna implementations
and simply returns a factor of 1.0 (representing an isotropic pattern).

Based on this approach it is possible to implement various antenna subclasses
which differ in the way of computing the specific gain. The subclass capturing one
of the most common use cases is SampledAntenna1D, which deals with two-
dimensional antenna patterns, i.e. only the horizontal plane is considered. In this case
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BasePhyLayer Antenna

SampledAntenna1D ... ...

Fig. 6 Overview of the newly added antenna classes.

the resulting gain depends on one variable, namely the signal’s horizontal angle of
incidence. The user needs to pick a representative antenna from the included database
(or provide samples of the radiation pattern at equidistant angles between 0° and
360°).

For the actual gain calculation, the signal direction has to be determined first. As
illustrated in Figure 7, this angle of incidence φ (also called azimuth angle) depends
on the sender’s and receiver’s position as well as on the orientation of the antenna in
question. As all of these parameters are known to the simulation, the azimuth angle φ
can be determined with the help of the scalar product. Next, the stored antenna gain
samples are queried at the determined angle. If the angle of the required gain value
is located between two samples, linear interpolation is applied. Finally, the signal
power is multiplied by the determined antenna gain factor.

Recent work also examined the influence of 3D antenna patterns in a three-
dimensional environment [8]. To this end, another antenna class has been imple-

vorient vLOSϕ

Fig. 7 Dependence of the azimuth angle based on Line of Sight (LOS) and orientation vector.

θLOS

vorient

vLOS
θorient

θ

Fig. 8 Dependence of the elevation angle based on LOS and orientation vector.
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mented, namely SampledAntenna2D. As the name implies, the antenna gain is
now dependent on two parameters. Besides the already introduced horizontal (az-
imuth) angle φ, the vertical (elevation) angle θ needs to be determined as well. It can
be computed based on the (now three-dimensional) antenna positions and orientation
of the ego vehicle (see Figure 8). Only if both angles are known it is possible to
specify the signal direction in the three-dimensional space.

Obviously, the user has to provide a 3D antenna pattern in the first place. As a
full representation is rarely available and would imply a large number of samples,
only the two principal planes are required for our model. The azimuth plane pattern
has already been used for the 2D antenna implementation. In addition, the elevation
plane pattern becomes necessary now. Again, equidistant samples of both patterns
of the antenna type to simulate need to be provided by the user and are stored. In
order to estimate the antenna gain in an arbitrary direction, the 3D antenna pattern
interpolation method described by Leonor et al. [36] is applied. It is based on
determining the four closest gain values on the principal planes and summing them
up weighted proportionally to their contribution. This way, the three-dimensional
antenna gain in the required direction can be estimated.

As a matter of course, the assignment of 3D antenna patterns only makes sense
if the whole environment of the scenario under investigation itself is modeled in a
three-dimensional way. This means that the underlying road network has to include
z-coordinates and that this additional 3D data also has to be exchanged between
SUMO and OMNeT++, where it can be used for the three-dimensional antenna
model.

Note, however, that 3D antenna patterns are not the only aspect that needs to
be considered for a sufficient three-dimensional simulation of VANET scenarios:
Brummer et al. [8] demonstrate that diffraction effects caused by surrounding terrain
and other vehicles in the LOS should not be neglected either. Figure 9 demonstrates
the impact that considering both 3D antenna patterns and terrain has on a simulation
measuring the average number of neighbors in reach of a car. It shows substantially
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differing numbers for the three setups independent for all simulated starting times
(and thus traffic densities).

In conclusion, it can be said that antenna characteristics (as well as diffraction
effects in the 3D case) should be taken into account for more realistic and reliable
results. The means to achieve that are readily available in the Veins framework.

2.4 Unit testing in Veins

Automated testing has become a central element of modern software development. In
a world of rapidly changing requirements and short development cycles, a quick and
repeatable assurance of code correctness is essential. Automated testing can provide
such assurance by running suites of programmed tests. Each test calls a portion of the
original code and compares the results (and in some cases side-effects) to reference
values embedded in the test. If all tests pass and the test suites cover all (or a large
enough portion) of the original code, one can be assured that the code behaves as
expected. If some tests fail, one can gain hints about which part of the code is not
behaving as expected by observing which tests fail and which portion of the code
they call. The whole process of running a test and evaluating its results can nowadays
be integrated into software version control and development workflows to support
continuous integration.

Veins users usually implement models of algorithms or protocols to conduct
research. While this is not the same as releasing a software product to end users,
asserting correctness of the software is just as important in this domain. Before being
able to rely on data generated from a simulation (or, indeed, publishing findings
based on it), the author has to be confident that all models of the simulation behave
as expected. Typically, this is done by comparing measurements recorded from the
simulated model to reference data obtained from analytical models or real-world
measurements. This approach treats the model as a single large black box. Only
behavior that is observable from the outside is compared to reference data. While this
approach is useful to verify the overall correctness of the model, it is hard to cover
the model’s complete behavior. For example, there may not be enough reference data
for all use cases or there may be mechanisms inside the model that are hard to verify
from the outside. Finally, manually comparing the model with reference data is a
cumbersome process that takes time and may be prone to errors due to its repetitive
nature.

Aside from manual result comparison, Veins and OMNeT++ have provided three
more automated testing mechanisms for a while now. The first one is a simple regres-
sion testing approach, already described in Chapter {1}: After a simulation finishes,
OMNeT++ can output its fingerprint, a hash value of its defining characteristics
(such as its event trace). Later fingerprints can then be used to verify that changes in
the code did not affect how the simulation behaves.

The second one is to simply run a simulation model that itself contains calls into
model code and assertions to check the results. Veins uses this in its TraCITestApp
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to check if some basic interactions with the SUMO traffic simulation lead to expected
results. This approach shares the pros and cons of the general usage of assertions
within model code: Preconditions and postconditions within model code can easily be
checked and are straightforward to write. However, the approach is unstructured and
not well suited for testing an entire model. Many checks have to be integrated into a
single simulation scenario and may depend upon each other. The whole simulation
kernel has to be loaded which increases runtime and complexity. Finally, there is
no support for established testing tools, e.g., for automation, coverage reporting, or
debugging.

The third mechanism is the OMNeT++ opp_test tool.7 It can run tests in a man-
aged environment similar to the execution environment of the OMNeT++ simulation
kernel. Message creation and sending as well as result recording and other OMNeT++
utilities are available just like during simulation execution. Such an environment is
hard to setup manually when using generic testing facilities. Tests are completely
encapsulated into single test files and run by the opp_test tool. Correctness can be
ensured by observing the successful termination of the simulation and by validating
simulation output of file streams, such as result files and standard output or standard
error. All of this makes opp_test the prime tool for testing OMNeT++, its modules,
and code that is tightly integrated with (or relying on) OMNeT++ mechanisms,
such as messages and channels. For everything that is not touching the OMNeT++
simulation kernel or library, however, opp_test is not the most straightforward tool
to use. The test file format introduces unnecessary overhead – and having to find all
values to check against in file streams is cumbersome.

Thus, for testing plain C++ code, more generic unit testing frameworks provide a
better solution. A very popular example of such frameworks is Catch2. Catch2 is a
powerful C++ unit testing framework that facilitates writing, running, and evaluating
unit tests for C++ code.8 Tests are written in plain C++ (with some macros), compiled
into an executable, and run by a built-in runner application. This runner allows to
control the way tests are run, e.g., output verbosity and format (e.g., for continuous
integration services). It can also limit the tests run to subsets of the test suite via tags
to speed up execution time or automatically spawn a debugger on failing tests. As it
is easy to learn, powerful in its capabilities, and comes with an unrestrictive license
(i.e., the Boost Software License, Version 1.0), it is an ideal framework to test Veins
code that does not touch the OMNeT++ kernel or library.

Limiting tests to plain C++ code may appear to be a restriction, but it is actually
an opportunity for better code design. When implementing models of algorithms and
protocols using Veins, ideally only a small fraction of the code has to actually be
written specifically for OMNeT++. Algorithms can easily be expressed as pure C++
functions or classes – and even protocol implementations can be written more cleanly
if they do not rely on the concrete messaging model employed by the OMNeT++
simulation kernel: Code written in such a manner contains fewer external depen-
dencies and moving parts. Especially the ownership model of OMNeT++ messages

7 https://www.omnetpp.org/doc/omnetpp/manual/
8 https://github.com/catchorg/Catch2
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(which heavily relies on passing raw pointers) is contrary to C++ best practices of
high-layer application development and a common source of errors. Integration can
then happen in a thin layer of code that implements OMNeT++ modules, channels,
or messages and, e.g., could be tested with the opp_test tool. This approach results
in code that is much easier to test, but also much easier to debug (as models can be
executed without a full simulation environment) and to port to other simulators or
platforms.

In Catch2, tests are implemented in C++ files (see below) which only have to
include a single header file. As discussed, these files are compiled individually and
linked together, which also includes a special runner program that is generated by
Catch2. The result is a plain binary that can be executed to run the contained tests.

Since Veins 4.7, this process has been automated in a subproject named
veins_catch. The subproject contains a Makefile that automatically builds the test
binary from C++ files found in its source directory. It dynamically links the file to
the shared library compiled from the original Veins code, so that both can be built
individually. This also means that the original Veins code is fully independent of
the test code. The test code, on the other hand, only needs to include header files
from Veins code as if it were a part of Veins itself. In addition, all the components
(including the test runner) are compiled individually and only have to be recompiled
if changed. As a result, build times stay short, which benefits frequent testing and
development styles like Test Driven Development (TDD).

In order to run the tests, one only has to execute the veins_catch binary produced
by the Makefile (given that it and Veins itself have been successfully compiled). The
binary provides a number of command line switches to control how and which tests
are run. For example, -s provides detailed output even for successful tests and -b
spawns a debugger in case of an error or failed test. The names or tags of tests to be
run can be given as command line arguments. See the Catch2 documentation or run
it with the -v switch for more information.

New tests can be added to existing or new C++ files in the src directory within the
veins_catch subproject. Ideally, every unit (e.g., class or set of functions) should get
its own file, mirroring the structure of the original Veins code to some degree. Each
such test file first has to include the Catch2 header file (catch/catch.hpp) and then
any headers of Veins components it wants to test against. Include paths are already
configured in a way such that tests code can include headers from Veins code as if it
was a part of Veins itself. However, if new libraries or dependencies are introduced
to Veins (in a way that affects header files), the configuration of veins_catch has to
be adapted in the same way.

Tests can be written in two styles: normal and Behavior Driven Development
(BDD) style. The former is faster to type, the latter is more expressive in terms of
debug output and test case structure. In any case, each individual test case (either
stated as a TEST_CASE or a SCENARIO), gets a description text and (optionally)
a list of tags. Within such a test case, one can write arbitrary C++ code to set up
the test. Assertions are then added via the REQUIRE macro (there is in fact a whole
family of macros to cover a wide range of use cases). It is important to always add at
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least one assertion to each test case, otherwise it might not be run. Sample test cases
and invocation of the unit tests are shown in Listing 3 and Listing 4.

2.5 Simple Timer Management

A common use case in many protocols is the handling of timers, that is, doing
something and – after a certain time interval elapsed – doing something else, possibly
repeatedly. OMNeT++ offers the concept of Self-Messages to support this use case:
any simulation module may schedule an event to be delivered to itself (using the
scheduleAt method), annotating its event handler with code to treat this special
event as expiration of a timer. Commonly, users create such events in a module’s
initialize method, schedule them in some user-defined method, and handle
them in a module’s handleMessage method.

Listing 3 Sample test case written in Catch2 in the veins_catch subproject

1 #include "catch/catch.hpp"
2 #include "veins/modules/mobility/traci/TraCICoordinateTransformation.h"
3
4 using Veins::TraCICoordinateTransformation;
5 using Veins::TraCICoord;
6 using OmnetCoord = TraCICoordinateTransformation::OmnetCoord;
7
8 SCENARIO( "coordinates can be transformed", "[netbound]") {
9 auto o1 = OmnetCoord(2414.90142, 1578.44161, 0.0);
10 auto t1 = TraCICoord(646854.991, 5493242.54);
11
12 GIVEN( "The boundaries from a scenario" ) {
13 TraCICoordinateTransformation nb{ {644465.09, 5491786.25},

{647071.55,5494795.98}, 25 };
14
15 THEN( "omnet coords correctly translate to traci coords" ) {
16 auto t2 = nb.omnet2traci(o1);
17 REQUIRE( t2.x == Approx(t1.x) );
18 REQUIRE( t2.y == Approx(t1.y) );
19 }
20 THEN( "traci coords correctly translate to omnet coords" ) {
21 auto o2 = nb.traci2omnet(t1);
22 REQUIRE( o2.x == Approx(o1.x) );
23 REQUIRE( o2.y == Approx(o1.y) );
24 }
25 }
26 }

Listing 4 Sample invocation of test cases in the veins_catch subproject

1 veins/subprojects/veins\_catch% ./configure
2 Creating Makefile in veins/subprojects/veins_catch/src...
3 veins/subprojects/veins\_catch% make
4 Creating binary: src/veins_catch
5 veins/subprojects/veins\_catch% ./src/veins_catch
6 All tests passed (4 assertions in 1 test case)
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At the scale (regarding number of timers) needed for many advanced protocols,
however, this way of modeling timers has a number of drawbacks for code complexity.
Because creation, scheduling, and handling of timeouts is split across multiple
methods, data must be communicated either in the events themselves (commonly
found patterns subclass from cMessage to achieve this). Further, boilerplate code
needs to be included with every handler to free memory or re-schedule repeated
events, depending on whether the timer is a one-shot or a repeating one.

Starting with Veins 4.7, the model library includes a utility class TimerManager
to ease writing timers. It supports users needing to write timers in two respects:

• it takes care of all memory management associated with OMNeT++ events; and
• it enforces robust, modern coding standards by relying on C++ 11 lambda con-

structs (or, indeed, any std::function) for passing data to callback handlers.

To use this functionality, all an OMNeT++ module needs to do is: create a
private instance of the TimerManager class and pass received events to it (by
introducing a small chunk of code in its handleMessage method). Timers can
then be introduced by calling the create method of this private instance, passing it
an object containing a lambda to execute when the callback fires. This lambda can,

Listing 5 TimerExample.h

1 #include "veins/modules/utility/TimerManager.h"
2
3 class TimerExample : public cSimpleModule {
4 protected:
5 virtual void initialize();
6 virtual void handleMessage(cMessage *msg);
7
8 // create a private instance of the TimerManager
9 Veins::TimerManager timerManager{this};
10 };

Listing 6 TimerExample.cc

1 Define_Module(TimerExample);
2
3 void TimerExample::initialize() {
4 int n = intuniform(0, 255);
5
6 // example: remind ourselves about the value of n in 500ms from now
7 auto callback = Veins::TimerSpecification([this, n](){
8 EV << "value of n was " << n << std::endl;
9 });
10 timerManager.create(callback.oneshotIn(SimTime(500, SIMTIME_MS)));
11
12 }
13
14 void TimerExample::handleMessage(cMessage *msg) {
15 // allow TimerManager to handle any timer events
16 if (timerManager.handleMessage(msg)) return;
17
18 // regular handleMessage follows...
19 }
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of course, bind any local variable (or a reference thereto) that needs to be available
in the callback.

Listing 5 and Listing 6 illustrate the use of the TimerManager class by way
of a simple example. Though (for the single timer taking a single integer value
demonstrated in this example) the overhead in terms of code that needs to be written
is identical to a solution using raw OMNeT++ events, it is easy to see that this
overhead is now simply a constant – independent of how many timers need to be
managed by a protocol implementation.

Naturally, the TimerManager instance offers not just a method to create, but
also to cancel timers – and timers can be both one-shot and repeating (either in a
given time interval or for a given number of repetitions).

3 Use Cases

In this section, we present two practical use cases: We give insights on the simulation
of platoons (Section 3.1) and intersection scenarios (Section 3.2).

3.1 Simulation of Platoons

Cooperative driving and automated car following (or platooning, illustrated in Fig-
ure 10), although not a new idea, is now an active research topic due to the ever-
increasing demand for highly safe and sustainable transportation. In brief, the idea of
platooning is to form road trains of vehicles – where one vehicle leads the group and
others autonomously follow it. The follow distance should be small, much shorter
than the safety distance maintained by human drivers. A close following gap im-
proves infrastructure utilization, as it reduces the portion of road wasted for the
safety distance. With an improved utilization comes a reduction of traffic congestion,
resulting in a more sustainable transportation infrastructure. In addition, a distance
in the order of a few meters reduces the air drag, lowering fuel consumption and
thus emissions. Finally, autonomously driven vehicles can improve safety: more than
90 % of road accidents are due to human errors [11].

Platooning is becoming technologically feasible, as witnessed by the projects
working on this topic and realizing successful Field Operational Tests (FOTs), such
as Sartre, Path, Konvoi, Companion, and Promote-Chauffeur [30, 51, 33, 35, 7].

Fig. 10 Screenshot of a platoon simulated in Veins.
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Before the actual market introduction, however, platooning should be tested in large
scale settings, to understand to which extent platooning technologies and solutions
would provide their expected benefits. In this setting (i.e., with tens or hundreds
of vehicles) FOTs are simply unfeasible. The solution is thus to resort to realistic
simulations and this is what Plexe has been designed for [50, 47].

Plexe is a Veins extension designed for the analysis of platooning systems from
different perspectives. From a low-level perspective, it enables the analysis of co-
operative control systems under realistic vehicle dynamics and network conditions.
This is especially useful to understand the impact of network impairments on the
performance of the control system, including heterogeneous vehicles in the anal-
ysis. From a high-level perspective, Plexe permits to design, implement, and test
platooning maneuvers, as well as to analyze the impact of different strategies on
traffic efficiency.

Figure 11 shows the high-level architecture of Plexe. It does not only extend
Veins, but also SUMO:

• On the SUMO side, autonomous control algorithms and vehicle dynamics are
implemented.

• On the Veins side, users can develop protocols and applications which take high-
level decision on vehicles’ behavior.

On the SUMO side of Plexe, the difference between a “standard” SUMO simula-
tion and a simulation of a cooperative driving system is mobility modeling. SUMO is
designed for the simulation of transportation systems with a special focus on human
traffic. Vehicles behave as dictated by “car-following models” which decide, for
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each timestep, what a vehicle should do depending on its surrounding environment,
including other vehicles, intersections, traffic lights, etc. Standard SUMO models
such as the Intelligent Driver Model (IDM) [60] or the Krauss model [32] reproduce
mobility patterns which are typical of human driving. In cooperative driving, instead,
decisions are taken by an automated system, which clearly behaves in a completely
different manner. In this regard, Plexe implements a new car-following model in
SUMO which embeds different control systems – and that can thus behave like an
cooperative autonomous vehicle.

More formally, Plexe gives access to a set of systems called “cruise controllers”.
The Cruise Control (CC) controller, as the name suggests, automatically maintains a
desired speed set by the driver: this way there is no need to keep the foot on the throttle.
This system is only a comfort feature, as the driver is required to manually disengage
it when approaching a slower vehicle. The next step in automation, automatic braking,
is provided by the Adaptive Cruise Control (ACC), which exploits a radar mounted
in the front bumper to maintain a safety gap to the front vehicle, if required.

Although the ACC provides the required functionality, it does not implement
platooning in the strict sense. The reason is that, due to the delays introduced by the
engine driveline and the radar sensor, it cannot perform close following [41]. The
safety distance maintained by an ACC is comparable to safety distances typical of
human driving, and it would thus fail in providing the required benefits.

The solution to this problem comes from cooperation, i.e., by sharing infor-
mation through a wireless link to implement a Cooperative Adaptive Cruise Con-
trol (CACC) [42, 40, 45, 1, 20, 38] (how this information is shared via the wireless
link is modeled in the Veins side of Plexe, described later in this section). A CACC
can have a huge performance improvement with respect to an ACC as communica-
tion overcomes the limitations of sensor-based systems. As an example, exploiting a
wireless link the leader can communicate with all its members simultaneously, while
a front-mounted radar is only capable of providing information about the preceding
vehicle. In addition, any vehicle can share intended actions which will be executed in
the near future: a radar can only sense an event after its occurrence.

In essence, the Plexe car-following model in SUMO makes it easy for users to
implement cruise control algorithms. Plexe already provides some sample imple-
mentations, i.e., the ACC defined in [41] and the CACCs designed in [42, 40, 45].
The software is in continuous development and newly developed control systems are
announced on the official website.9

In addition to the control algorithms, Plexe models engine characteristics and
vehicle dynamics. The control system computes a desired acceleration which needs
to be realized by the vehicle. This process, however, requires a certain amount of
time, the actuation lag, due to the engine driveline or to the braking system. This
can be properly taken into account, increasing the realism of the analysis and the
trustworthiness of the results. Plexe provides two sample implementations: a simple
but widely assumed first order lag (i.e., a first order low-pass filter) as well as a
realistic engine model which takes into account engine torque curve, gear ratios,

9 http://plexe.car2x.org
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vehicle mass, aerodynamic characteristics, etc. Describing these models is out of
the scope of this chapter. The interested reader can find a detailed mathematical
description of the models (as well as of the control algorithms) in [46].

We now turn to the Veins side of Plexe. On the Veins side of the simulation, each
vehicle has a corresponding network node implementing communication protocols,
applications, and scenarios (Figure 11). Each module can influence the behavior of
its corresponding vehicle (or retrieve data about it) using the extension of the TraCI
Application Programming Interface (API) provided by Plexe.

The scenario module implements the high-level behavior of the vehicle. Two
basic examples included in the online tutorial are the sinusoidal and the braking
scenarios. In the first, the scenario continuously changes the leader speed to analyze
the behavior of the control system under disturbance. In the second, instead, the
leader performs an emergency braking coming to a complete stop.

Applications influence the behavior of vehicles as scenarios do, but they do so
based on the information they receive through wireless communication. The most
simple example is feeding the CACC using the data of a member of the same platoon.
In this case, depending on whether the information is correctly received or not, the
behavior of the vehicle changes (as the CACC computes different control actions).
Another use case is the implementation of a maneuver and its corresponding protocol.
In the case of a join maneuver, for instance, a vehicle might get instructions for
joining from the leader of a platoon.

Below the application level we find communication components. In particular,
we have communication protocols that implement beaconing strategies. This way
it is possible to understand what happens to the control system depending on the
employed data dissemination mechanism [48, 49]. As an example, the user can
analyze the difference between a static beaconing approach vs. a coordinated one.
Even further down the stack, we find the network card and the wireless channel
models that are included in the standard Veins release. They provide the necessary
level of realism for IEEE 802.11p-based Vehicle-to-Vehicle (V2V) communication.

The structure provided by Plexe on the Veins side is meant for defining the
base concepts and to ease the development process. It also enables a user to define
his/her own communication/application structure, providing users with the maximum
possible flexibility.

3.2 Communication on Intersections

In May 2018, the European Commission announced that it wants to reduce the num-
ber of fatalities per year on European roads by 2050 to nearly zero. Beside passive
safety measures (e.g., advanced seatbelts, improved safety glass) the commission
proposed different kinds of active safety measures (often called Advanced Driver As-
sistance Systems – ADAS), which aim to support drivers and prevent accidents. The
envisioned safety features of future vehicles include advanced emergency braking,
intelligent speed assistance, and lane keeping assistance.
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Some of the safety-relevant ADAS do already exist and use various sensor tech-
nologies to assess the situation. However, the current systems are limited by their
sensors to visual range. Using inter-vehicle communication, sensor data can be dis-
tributed among vehicles outside one another’s field of view. One prominent example
are Intersection Assistance Systems (IAS) which rely on location and movement
information.

Veins is a natural fit for simulating communication while vehicles are approaching
an intersection (illustrated in Figure 12) in a potentially dangerous situation. SUMO,
on the other hand, is designed to simulate collision-free traffic, which makes it
a less natural fit: Its car-following models are designed to be collision-free, i.e.,
vehicles approaching an intersection will never have a crash nor get into a potentially
dangerous situation. However, starting with SUMO version 0.20.0, it is possible to
turn off different safety checks of the car-following models. Hence, simple crash
situations can be simulated by letting two vehicles start at the same time and distance
to an intersection. In addition, the time when safety checks are disabled can be
varied and hence a wider variety of crash situations simulated. This is possible for all
implemented car following models.

Several measurements on how drivers approach intersections can be found in
the literature [5]. A comparison of existing car-following models (e.g., the Krauss
model [32] or the IDM [60]) quickly reveals that the IDM better reflects human
behavior when approaching an intersection [28]. Note also that default simulation
time steps (in the magnitude of seconds) for data exchange between SUMO and
OMNeT++ will not allow to sufficiently model such complex situations. Depending
on the vehicular safety application under investigation simulation time steps between
1 ms and 100 ms will be reasonable. For a detailed analysis of the simulation time
step we refer the reader to the literature [26].

Fig. 12 Screenshot of an intersection simulated in Veins.
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In the following, insights on how Veins can be used to research safety metrics and
situation-aware communication for IAS are shared.

Other than typical metrics of network behavior (like latency or load) and typical
metrics of road traffic behavior (like emissions or travel time [58]), the primary
metrics for traffic intersection must assess criticality. Metrics that assess the criticality
of driving situations are called safety metrics. Basically, the criticality of a situation
can be estimated when having driving information of all surrounding vehicles. The
information for estimating the risk depends heavily on the situation, but might include:
the exact geographical position, the driving direction, the speed, the acceleration, the
planned route, or even typical driving behavior of the current driver. Please note that
most of these parameters can be accessed in Veins directly or by an extension of the
data exchange interface (TraCI) between SUMO and OMNeT++.

Finally, it is of course important to detect crash situations at intersections. This
feature is implemented in Veins, which also enables the result recording of interesting
simulation data directly in OMNeT++.

In the following a closer look on intersection scenarios is presented, i.e., a pos-
sibility to estimate the likelihood of a crash at an intersection is explained in brief.
For a detailed description, we refer the reader to the literature [29]. The considered
information for two vehicles A and B, which are approaching an intersection, is as
follows:

• distances dA and dB reflecting the distance to the intersection of trajectories
• speeds vA and vB

• the maximum acceleration amax and the maximum deceleration (negative) amin.

The values of amin and amax would of course be different for each vehicle, but the
vehicle dependent indices are omitted for simplicity.

The intersection collision probability can be estimated by considering all possible
driver behaviors (called trajectories) of approaching vehicles. A trajectory is a feasible
function of time that satisfies the constraints

TA(t0) = dA, ṪA(t0) = vA, amin ≤ T̈A(t) ≤ amax. (4)

All possible future trajectories are denoted as TA and defined by TA =
⋃TA. Of

course, this set depends on the current distance dA and speed vA as each trajectory
does. In addition, it is limited by the two trajectories applying constant maximum
acceleration amax and constant maximum deceleration amin.

A crash between vehicles A and B happens if the bounding boxes (defined by
length and width of the vehicles) are overlapping during the intersection approach.
This is used to define a function coll (TA,TB), which returns 0 if no crash happens
and 1 if a crash happens for the given trajectories.

The intersection collision probability PC depends of course on the probability that
two trajectories are chosen which lead to a crash. This probability function is denoted
as p(TA,TB). Therefore, the intersection collision probability PC can be calculated
by integrating over all possible trajectories and summing up the probabilities as
follows:
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PC =

∫

TB

∫

TA

p(TA,TB) coll (TA,TB) dTA dTB. (5)

Aside from serving as an output metric of simulations, this metric can also be
used to improve communication on intersection scenarios, as we will describe in the
following.

Figure 3a shows that Veins already provides all necessary lower layers for eval-
uating communication strategies. Therefore, one can directly start designing the
application layer, i.e., a message dissemination algorithm, which determines parame-
ters like the content of messages or the interval of message generation. The content
of the message may include position, speed, acceleration, and heading, but also
neighbor information (last received message sequence number or time) might be
helpful for advanced communication strategies.

The message generation interval was subject to extensive research during the past
decade (e.g. [57]). Several congestion control mechanisms have been proposed to
keep the channel load in a reasonable and efficient range. To improve communication
reliability in dangerous situations, safety metrics can be used to alter the message
dissemination interval alongside with congestion control mechanisms.

The intersection collision probability can be used to realize situation-aware com-
munication for intersections. Basically, each vehicle can calculate its intersection
collision probability when receiving a message from another vehicle. If the prob-
ability exceeds a certain threshold, the vehicle will temporarily lower its message
dissemination interval accordingly. Hence, vehicles in a dangerous situation are
trying to communicate more frequently, whereas others will automatically increase
their message intervals (which in turn helps to keep the channel load balanced).

Finally, proposed communication strategies (such as situation-aware communi-
cation) need to be evaluated. Basically, a detailed analysis of message arrival times
(which can be recorded in OMNeT++) is sufficient. The following three metrics rep-
resent a basis for evaluating communication strategies of safety applications (details
in [26]):

• Last Before Unavoidable; the last message received and the point in time before
a crash becomes unavoidable is of course of particular concern.

• Worst-case Update Lag; the update lag measures the time between two consec-
utive messages. Obviously, the most critical update lag is the longest during a
certain time interval before a crash happens (called worst-case update lag).

• Unsafe Time; when a certain update lag is required by an application, it can help
to sum up all times where the update lag was not maintained.

4 Extensions

In this section, we discuss how to use Veins in simulations involving LTE networks
(Section 4.1) and in simulations involving regular Internet-centric protocols, that is,
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with models included in the INET Framework (Section 4.2). A discussion of Instant
Veins for classroom use or quick deployment (Section 4.3) concludes the chapter.

4.1 Using LTE models in Veins (Veins LTE)

Combining multiple networking technologies for ITS is called Heterogeneous Ve-
hicular Networking. In the context of vehicular networks these networks are often
LTE and IEEE 802.11p based, i.e., a cellular and an IEEE 802.11p network. LTE is
already widely deployed, mainly for use in mobile phones – but new cars regularly
come equipped with a SIM card. In the EU, starting in April 2018, all new cars
need to be equipped with the eCall system used to automatically call emergency
services if an accident happens. Due to the centralized nature of cellular networks,
scheduling can be used to handle situations with an overloaded channel. Nevertheless,
there are disadvantages: vehicles are not considered in currently deployed cellular
networks, especially when it comes to constant beaconing. Since 2017, LTE-V2X
is standardized in a first version in LTE Release 14 as an extension to LTE Device-
to-Device (D2D). The standard added two additional D2D modes which specifically
focus on vehicular networking, one of them requiring an eNodeB (Mode 3) while the
other one works in a distributed manner (Mode 4). Nonetheless, there are various
points of discussion and an update to LTE-V2X is included in LTE Release 15,
which is scheduled for a release in 2018. If the infrastructure cannot cope with the
additional load of cars using the cellular network (mode 4 is only used when there is
no eNodeB in transmission range), there is the question who pays for the necessary
upgrades. Not only the infrastructure improvements need to be paid, someone needs
to finance the usage of the cellular networks. Currently this is mostly included in
the price of the cars, but if more cars come equipped with cellular technology this
might change. Overall cellular networks are an alternative to Wireless Local Area
Networks (WLANs) based networks when it comes to vehicular networking. Never-
theless, they have their own disadvantages, so research has been conducted to use
both technologies. Additionally, research is conducted on other alternatives such as
VLCs and Bluetooth.

The basic idea of heterogeneous vehicular networking is to use the strengths of
one networking technology to overcome the weakness of the other when used in a
certain application scenario. Take long-range communication in vehicular networks
as an example. Transmitting data to a distant node in an IEEE 802.11p based network
needs a connected network from the source car to the destination. If the network
is not fully connected, the data might get lost or a large delay due to the use of
store-carry-forward is induced. When using cellular networks, this is not the case
as long as the cars are in range of a base station, i.e., an eNodeB, which can handle
the transmission via the backbone. Similarly, IEEE 802.11p based networks allow to
have a simpler (and potentially faster) communication between cars close to each
other compared to using a cellular network where every message needs to traverse the
backbone. Furthermore, heterogeneous technologies can be a fall back mechanism
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if one of them is not available. This might prove useful in the initial deployment
phases of connected vehicles where IEE 802.11p will not be used widely while LTE
infrastructure exists already.

When using Veins alone, cellular networks can only be simulated in a very
rudimentary way by using direct communication with a small amount of delay.
Therefore, various solutions exist which provide more complete heterogeneous
simulations:

• SimuLTE: A framework for OMNeT++ which recently introduced experimental
support to combine it with Veins [62, 63, 61].

• Veins LTE: A framework integrating Veins and SimuLTE resulting in a toolbox
to develop algorithms exploiting both IEEE 802.11p and LTE channels [21].

• Artery: A framework for simulation of ETSI ITS-G5 protocols which among
various others includes Veins and SimuLTE [43].

As an example of a framework providing support for heterogeneous vehicular
networks, we briefly introduce the first one with support for vehicles, i.e., Veins LTE
and its features [21] (a discussion of SimuLTE and Artery can be found in Chapter {5}
and Chapter {12}, respectively). Veins LTE combines short-range communication
(Veins providing IEEE 802.11p) with cellular communication (SimuLTE providing
LTE).

SimuLTE is, as the name gives away, a simulation model library for LTE. It cur-
rently provides support for the major parts of LTE including base stations (eNodeBs),
mobile nodes (UEs), a (nearly) complete data plane, multiple example applications,
an extensive MAC layer implementation, the backbone in the form of the X2 inter-
face [39], and various basic scheduling algorithms. The downsides of SimuLTE are
that it focuses on the user plane and only covers a rudimentary control plane as well
as only basic handover between base stations.

Both simulation model libraries, SimuLTE and Veins are based on OMNeT++,
which allows to integrate them with each other. The focus of the integration was
to include cars as nodes into the cellular network. While instantiating models from
both libraries at the same time is easy due them using OMNeT++, there are certain
issues with their network models, which have proven to be incompatible. This is
especially true for the treatment of mobility. On the one hand SimuLTE did expect a
fully setup network (including all moving nodes) and did not allow nodes to enter
or leave at runtime. On the other hand, Veins relies on nodes dynamically entering
and leaving the simulation to simulate realistic traffic conditions. To successfully
integrate Veins with SimuLTE the whole LTE stack on UE and eNodeB side was
modified to accommodate the addition of new vehicles and the correct removal of
them during runtime.

The overall architecture of Veins LTE can be seen in Figure 13. To make the
development of new heterogeneous algorithms easier, a new layer was introduced
– the Decision Maker. Residing between the application layer and the two network
stacks it adds the possibility to provide a scheduler spanning both the IEEE 802.11p
and the LTE network stack. If the application has set a specific network technology,
the corresponding stack is used by this module, even if the chosen network is currently
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Fig. 13 The heterogeneous networking stack introduced in Veins LTE [21].

not available. If no such network is set by the application, this layer allows a developer
to add a decider module, which decides on the network layer on which to send the
packet. Such a scheduler can for example choose the target network stack based on
the channel load or make this decision based on the distance between sender and
receiver. Furthermore, this is useful to test an algorithm with barely any configuration
overhead both in an IEEE 802.11p as well as in a LTE setting. Below this layer is the
adaption layer, which adds the necessary parameters to the heterogeneous message
in order to make it possible to send it via the chosen stack. An application only needs
to set the most basic parameters (e.g., destination, payload) and the rest is added or
adapted by the decision maker layer. After applying the necessary attributes to the
messages, they are sent via the selected networking stack.

These features, especially the integration of two networking technologies and
the decision layer, allow a user of Veins LTE to focus on the development of the
algorithm rather than on the underlying network.

4.2 Using INET Framework models in Veins (veins_inet)

Often, Veins simulations need to be combined with simulations of common Internet
protocols. Conversely, systems employing Internet protocols like those of Cloud
services, backbone networks, or Mobile Ad Hoc Networks (MANETs) often need
to be simulated with nodes carried in road traffic. One is the domain of Veins, the
other is the domain of the INET Framework, the prime OMNeT++ model library for
Internet protocol simulation.

Veins thus includes an extension, veins_inet, which allows models of the
INET Framework to use Veins as a mobility model. Because many other simulation
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model libraries, in turn, rely on the INET Framework for modeling node movement,
this extension also allows any of these simulation model libraries to model nodes in
road traffic.

The extension is included as a subproject, that is, as a separate simulation project
but contained in the source tree of Veins.

All that is needed is to have the target simulation project use the model libraries
of all of: Veins, the INET Framework, and veins_inet. In the OMNeT++ IDE this is
achieved by importing all three projects into the workspace and changing the target
simulation’s project settings to use all three as referenced projects. On the command
line, this is achieved by supplying the corresponding -I, -L, and -l switches to
opp_makemake – as well as the corresponding -l and -n switches to opp_run.

In such simulations, instantiating a module VeinsInetManager in the net-
work will take care of connecting to a SUMO road traffic simulation, instantiating
one simulation module per road traffic participant in the SUMO simulation, and
updating the modules’ position information as the simulation executes (as detailed in
Section 2.1). Care must only be taken that modules intended to represent road traffic
participants contain VeinsInetMobility as their INET Framework mobility
module (e.g., by configuring this in the omnetpp.ini file).

Figure 14 illustrates such a combined simulation. Note the presence of a
VeinsInetManager module in the network (named “manager”) and a mobil-
ity module of type VeinsInetMobility (named “mobility”) in the module
representing a car.

Fig. 14 Screenshot of the sample simulation of veins_inet running in the OMNeT++ GUI.
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4.3 Instant Veins

Many moving parts comprise a typical Veins simulation: first of all, the road traffic
simulation tool SUMO; second, the OMNeT++ simulation kernel, the simulation
model under study, and all model libraries it is based on. For example, a simulation
model of vehicles communicating with a cloud service reachable via LTE will
typically rely not just on Veins, but also on the INET Framework (for Internet
protocols), SimuLTE (for LTE simulation models), as well as Veins_INET (for
linking these together).

All of these components must be downloaded, compiled, and configured for
linking into a mixed simulation by the interested user. In addition, care must be
taken that the software versions of these tools are closely aligned, so that they remain
interoperable.

This is a common source of error or delay for the newcomer who wants to quickly
try out a novel tool – and a source of frustration for the teacher who needs to oversee
the installation and deployment on hundreds of students’ machines every course.

Veins is therefore also available as a virtual appliance, Instant Veins, which can
be installed with a single click – and run independent from the operating system of
the target machine. Its only prerequisite is pre-installed virtualization software, such
as the Open Source tool Oracle VM VirtualBox or any other tool that can read the
Open Virtual Appliance (.ova) file format, such as the popular VMware Workstation
Player. Instant Veins already contains compatible versions of all of Veins, the INET
Framework, and Veins_INET to link the two (and, as a special download, also of
SimuLTE) – along with OMNeT++ and SUMO.

On most machines, all that is needed is to double-click the downloaded .ova
virtual appliance file to import it into the user’s virtualization tool, from where it
can then be launched directly – though some machines might have a slightly more
involved installation procedure for .ova files, e.g., requiring the user to confirm
opening the file first.

After booting the virtual appliance and logging in, all needed tools can be started
from the graphical shell (by clicking their respective launch icon). For example,
after clicking on the OMNeT++ launch icon, a user is soon presented with the
usual OMNeT++ IDE, which already has a workspace open that includes all four
mentioned simulation libraries – ready to run.

Instant Veins is built on fully Open Source tools, most importantly Debian
GNU/Linux as its base (taking care to only include re-distributable software with
the base installation). This makes Instant Veins particularly useful in the classroom:
Aside from getting students up and running within as little as a minute, the virtual
appliance file can be freely shared with and among students.
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Fig. 15 Screenshot of the Instant Veins virtual appliance, showing the OMNeT++ IDE after clicking
on the OMNeT++ launch icon.
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[34] Kwoczek, A., Raida, Z., Láčík, J., Pokorný, M., Puskely, J., Vágner, P.: Influ-
ence of Car Panorama Glass Roofs on Car2car Communication. In: 3rd IEEE
Vehicular Networking Conference (VNC 2011), Poster Session, pp. 246–251.
IEEE, Amsterdam, Netherlands (2011). DOI 10.1109/VNC.2011.6117107



38 C. Sommer, D. Eckhoff, A. Brummer, D. Buse, F. Hagenauer, S. Joerer and M. Segata

[35] Larson, J., Liang, K.Y., Johansson, K.H.: A Distributed Framework for Coordi-
nated Heavy-Duty Vehicle Platooning. IEEE Transactions on Intelligent Trans-
portation Systems 16(1), 419–429 (2015). DOI 10.1109/TITS.2014.2320133

[36] Leonor, N.R., Caldeirinha, R.F.S., Sánchez, M.G., Fernandes, T.R.: A Three-
Dimensional Directive Antenna Pattern Interpolation Method. IEEE Antennas
and Wireless Propagation Letters 15, 881–884 (2016). DOI 10.1109/LAWP.
2015.2478962

[37] Memedi, A., Tsai, H.M., Dressler, F.: Impact of Realistic Light Radiation
Pattern on Vehicular Visible Light Communication. In: IEEE Global Telecom-
munications Conference (GLOBECOM 2017). IEEE, Singapore (2017). DOI
10.1109/GLOCOM.2017.8253979

[38] Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Naka-
mura, M.: Cooperative Adaptive Cruise Control in Real Traffic Situations. IEEE
Transactions on Intelligent Transportation Systems 15(1), 296–305 (2014).
DOI 10.1109/TITS.2013.2278494

[39] Nardini, G., Virdis, A., Stea, G.: Modeling X2 backhauling for LTE-advanced
and assessing its effect on CoMP coordinated scheduling. In: 1st Interna-
tional Workshop on Link- and System Level Simulations (IWSLS 2016). IEEE,
Vienna, Austria (2016). DOI 10.1109/IWSLS.2016.7801582

[40] Ploeg, J., Scheepers, B., van Nunen, E., van de Wouw, N., Nijmeijer, H.: Design
and Experimental Evaluation of Cooperative Adaptive Cruise Control. In: IEEE
International Conference on Intelligent Transportation Systems (ITSC 2011),
pp. 260–265. IEEE, Washington, DC (2011). DOI 10.1109/ITSC.2011.6082981

[41] Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer (2012)
[42] Rajamani, R., Tan, H.S., Law, B.K., Zhang, W.B.: Demonstration of Integrated

Longitudinal and Lateral Control for the Operation of Automated Vehicles in
Platoons. IEEE Transactions on Control Systems Technology 8(4), 695–708
(2000). DOI 10.1109/87.852914

[43] Riebl, R., Günther, H.J., Facchi, C., Wolf, L.: Artery - Extending Veins for
VANET Applications. In: 4th International Conference on Models and Tech-
nologies for Intelligent Transportation Systems (MT-ITS 2015). IEEE, Bu-
dapest, Hungary (2015). DOI 10.1109/MTITS.2015.7223293

[44] Riebl, R., Monz, M., Varga, S., Maglaras, L., Janicke, H., Al-Bayatti, A.H.,
Facchi, C.: Improved Security Performance for VANET Simulations. In: 4th
IFAC Symposium on Telematics Applications (TA 2016), vol. 49, pp. 233–238.
Elsevier, Porto Alwegre, Brasil (2016). DOI 10.1016/j.ifacol.2016.11.173

[45] Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M., Lo Cigno, R.: A
Consensus-based Approach for Platooning with Inter-Vehicular Communica-
tions and its Validation in Realistic Scenarios. IEEE Transactions on Vehicular
Technology 66(3), 1985–1999 (2017). DOI 10.1109/TVT.2016.2585018

[46] Segata, M.: Safe and Efficient Communication Protocols for Platooning Control.
Phd thesis (dissertation), University of Innsbruck (2016)

[47] Segata, M.: Platooning in SUMO: An Open Source Implementation. In: SUMO
User Conference 2017, pp. 51–62. DLR, Berlin, Germany (2017)



Veins 39

[48] Segata, M., Bloessl, B., Joerer, S., Sommer, C., Gerla, M., Lo Cigno, R.,
Dressler, F.: Towards Communication Strategies for Platooning: Simulative and
Experimental Evaluation. IEEE Transactions on Vehicular Technology 64(12),
5411–5423 (2015). DOI 10.1109/TVT.2015.2489459

[49] Segata, M., Dressler, F., Lo Cigno, R.: Jerk Beaconing: A Dynamic Approach
to Platooning. In: 7th IEEE Vehicular Networking Conference (VNC 2015),
pp. 135–142. IEEE, Kyoto, Japan (2015). DOI 10.1109/VNC.2015.7385560

[50] Segata, M., Joerer, S., Bloessl, B., Sommer, C., Dressler, F., Lo Cigno, R.:
PLEXE: A Platooning Extension for Veins. In: 6th IEEE Vehicular Networking
Conference (VNC 2014), pp. 53–60. IEEE, Paderborn, Germany (2014). DOI
10.1109/VNC.2014.7013309

[51] Shladover, S.: PATH at 20 – History and Major Milestones. In: IEEE Intelligent
Transportation Systems Conference (ITSC 2006), pp. 22–29. Toronto, Canada
(2006). DOI 10.1109/ITSC.2006.1706710

[52] Sommer, C., Dressler, F.: Using the Right Two-Ray Model? A Measurement
based Evaluation of PHY Models in VANETs. In: 17th ACM International
Conference on Mobile Computing and Networking (MobiCom 2011), Poster
Session. ACM, Las Vegas, NV (2011)

[53] Sommer, C., Dressler, F.: Vehicular Networking. Cambridge University Press
(2014). DOI 10.1017/CBO9781107110649

[54] Sommer, C., Eckhoff, D., Dressler, F.: IVC in Cities: Signal Attenuation by
Buildings and How Parked Cars Can Improve the Situation. IEEE Transactions
on Mobile Computing 13(8), 1733–1745 (2014). DOI 10.1109/TMC.2013.80

[55] Sommer, C., Eckhoff, D., German, R., Dressler, F.: A Computationally Inex-
pensive Empirical Model of IEEE 802.11p Radio Shadowing in Urban Envi-
ronments. In: 8th IEEE/IFIP Conference on Wireless On demand Network
Systems and Services (WONS 2011), pp. 84–90. IEEE, Bardonecchia, Italy
(2011). DOI 10.1109/WONS.2011.5720204

[56] Sommer, C., German, R., Dressler, F.: Bidirectionally Coupled Network and
Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions on
Mobile Computing 10(1), 3–15 (2011). DOI 10.1109/TMC.2010.133

[57] Sommer, C., Joerer, S., Segata, M., Tonguz, O.K., Lo Cigno, R., Dressler, F.:
How Shadowing Hurts Vehicular Communications and How Dynamic Beacon-
ing Can Help. IEEE Transactions on Mobile Computing 14(7), 1411–1421
(2015). DOI 10.1109/TMC.2014.2362752

[58] Sommer, C., Krul, R., German, R., Dressler, F.: Emissions vs. Travel Time:
Simulative Evaluation of the Environmental Impact of ITS. In: 71st IEEE
Vehicular Technology Conference (VTC2010-Spring), pp. 1–5. IEEE, Taipei,
Taiwan (2010). DOI 10.1109/VETECS.2010.5493943

[59] Torrent-Moreno, M., Schmidt-Eisenlohr, F., Füßler, H., Hartenstein, H.: Effects
of a realistic channel model on packet forwarding in vehicular ad hoc networks.
In: IEEE Wireless Communications and Networking Conference (WCNC 2006),
pp. 385–391. IEEE, Las Vegas, NV (2006). DOI 10.1109/WCNC.2006.1683495



40 C. Sommer, D. Eckhoff, A. Brummer, D. Buse, F. Hagenauer, S. Joerer and M. Segata

[60] Treiber, M., Hennecke, A., Helbing, D.: Congested Traffic States in Empirical
Observations and Microscopic Simulations. Physical Review E 62(2), 1805–
1824 (2000)

[61] Virdis, A., Nardini, G., Stea, G.: Modeling unicast device-to-device commu-
nications with SimuLTE. In: 2016 1st International Workshop on Link- and
System Level Simulations (IWSLS), pp. 1–8. IEEE, Vienna, Austria (2016)

[62] Virdis, A., Stea, G., Nardini, G.: SimuLTE - A Modular System-level Simu-
lator for LTE/LTE-A Networks based on OMNeT++. In: 4th International
Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH 2014). Vienna, Austria (2014)

[63] Virdis, A., Stea, G., Nardini, G.: Simulating LTE/LTE-Advanced Networks with
SimuLTE. In: S.M. Obaidat, T. Ören, J. Kacprzyk, J. Filipe (eds.) Simulation
and Modeling Methodologies, no. 402 in Advances in Intelligent Systems and
Computing, pp. 83–105. Springer (2016)

[64] Wessel, K., Swigulski, M., Köpke, A., Willkomm, D.: MiXiM – The Physical
Layer: An Architecture Overview. In: 2nd ACM/ICST International Con-
ference on Simulation Tools and Techniques for Communications, Networks
and Systems (SIMUTools 2009): 2nd ACM/ICST International Workshop on
OMNeT++ (OMNeT++ 2009). ACM, Rome, Italy (2009)

[65] Zardosht, B., Beauchemin, S.S., Bauer, M.A.: A predictive accident-duration
based decision-making module for rerouting in environments with V2V com-
munication. Elsevier Journal of Traffic and Transportation Engineering (2017).
DOI 10.1016/j.jtte.2017.07.007


