Bart van Arem, Cornelie J. G. van Driel and Ruben Visser, "The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics," IEEE Transactions on Intelligent Transportation Systems, vol. 7 (4), pp. 429–436, December 2006. [DOI, BibTeX, Details...]


Cooperative adaptive cruise control (CACC) is an extension of ACC. In addition to measuring the distance to a predecessor, a vehicle can also exchange information with a predecessor by wireless communication. This enables a vehicle to follow its predecessor at a closer distance under tighter control. This paper focuses on the impact of CACC on traffic-flow characteristics. It uses the traffic-flow simulation model MIXIC that was specially designed to study the impact of intelligent vehicles on traffic flow. The authors study the impacts of CACC for a highway-merging scenario from four to three lanes. The results show an improvement of traffic-flow stability and a slight increase in traffic-flow efficiency compared with the merging scenario without equipped vehicles

Quick access


  • Bart van Arem
  • Cornelie J. G. van Driel
  • Ruben Visser

BibTeX reference

  author = {van Arem, Bart and van Driel, Cornelie J. G. and Visser, Ruben},
  title = {{The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics}},
  doi = {10.1109/TITS.2006.884615},
  issn = {1524-9050},
  journal = {IEEE Transactions on Intelligent Transportation Systems},
  month = {December},
  number = {4},
  pages = {429--436},
  publisher = {Institute of Electrical and Electronics Engineers},
  volume = {7},
  year = {2006},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at