
!

“monk-it”

Prism++ Documentation

University of Erlangen
Computer Networks and Communication Systems

and Regional Computing Center

Authors

Tobias Limmer
Falko Dressler
Martin Gründl

23.12.2008

Contents

1. Introduction 1

2. Prism++ 2
2.1. Correlation engine . 2

2.1.1. Requirements . 3
2.1.2. Event Representation . 4
2.1.3. Architecture of the Correlation Engine 4

2.2. Webinterface . 8
2.2.1. Correlation engine management . 8
2.2.2. Analysis of collected events . 10

3. Installation 15
3.1. Correlation engine . 15
3.2. Webinterface . 15

4. Structure and Configuration 17
4.1. Correlation engine . 17

4.1.1. Database Schema . 18
4.1.2. Configuration . 18

4.2. Webinterface . 29

A. Appendix 30
A.1. Example configuration . 30

1. Introduction

The goal of this project is not only to develop a correlation engine, but to create a
framework for correlator modules and a simple runtime environment which executes,
controls and monitors the components. The developed tool Prism++ is based on earlier
work on Prism [KVHD06a, KVHD06b].

The basic architecture of the correlation engine consists of three major layers outlined
in Figure 1.1. A receiver collects all incoming events and preprocesses them for further
use. These events are then analyzed, filtered and processed according to the various
implemented algorithms. Finally the resulting alerts are stored for later reference or
more specific analysis and an operator or other systems is notified, if required.

Events Events

Correlation
Engine

PRISM++
DB

Alert Reaction

Web
Interface

Event Receivers

Figure 1.1.: PRISM++ correlation engine overview

While most correlation engines currently available are suited for either analyzing real-
time event streams or processing archived events in batch mode, we provide a tool which
supports real-time analysis and is able to analyze archived events by simulating real-time
operation as well in fast-forward mode. The advantage of this approach is the ability to
reconstruct the previously obtained results and to analyze them with regard to a specific
aspect while using either the same configuration or a variation of it.

2. Prism++

2.1. Correlation engine

To increase the flexibility of our implementation and to ease the implementation of addi-
tional functionality, we realized all components of the correlation engine as independent
modules, which are usable at any position in the architecture.

Receiving Events The main task of this layer is to receive events, normalize them
according to a common format and optionally archive them for later reference or in-
depth analysis. Finally, they are forwarded to the correlation components for further
processing.

Correlation To enhance the flexibility of the correlation engine, the actual processing
units are based on a common design to allow flexible reconfiguration for additional analy-
sis or future requirements. Consequently, this feature requires standardized internal data
structures, which represent the events internally and enable an unrestricted composition
of the processing units.

All events coming from the input layer traverse a configured chain of components
and each of them performs operations on the event. Besides simple filtering to remove
irrelevant events, analyzing specific properties to detect patterns or collecting statistical
data, a processing unit may also aggregate multiple related events into a meta event to
decrease the amount of events. The events may also be enriched with metadata that
supplies additional information about involved networks, hosts or services.

Results The results of the correlation process are finally processed by output compo-
nents, which are responsible for archiving the resulting alerts and all activity pertaining
to notification and reaction.

It is especially important to store all alerts generated by the correlation engine per-
manently for later analysis and to facilitate the reconstruction of incidents or anomalous
behavior. If the correlation engine is monitoring a specific, well-known network for in-
trusions, notification of security personnel about potential intrusions is an important
feature as well. Depending on the environment, it may also be suitable to automatically
initiate active countermeasures against detected incidents, for example by reconfiguring
firewalls to prevent further damage.

To access the alerts reported by the correlation engine and to analyze available data, a
web interface is provided which provides access to the alerts generated by the correlation
engine and to the events received from sensors as well.

3 3

2.1.1. Requirements

The following requirements were used as a foundation for the design and implementation
of the PRISM++ correlation engine.

1. Integration of multiple data sources A fundamental mechanism of event cor-
relation is the analysis of events coming from multiple data sources and, therefore,
it is quite important to facilitate the integration of additional systems into the
existing architecture.

2. Extensibility As event correlation is currently an active field of research for aca-
demic institutions and commercial organizations due to the increasing awareness
for security, new approaches for correlating events are constantly developed. To
follow this trend, our correlation engine should not only be able to provide mean-
ingful results to analysts, but also actively encourage the security community and
other audiences to experiment with the numerous possibilities of event correlation.
Therefore, both the architecture and the language used for the implementation
should provide a high level of abstraction and hide the internal operations not
directly related to the processing of events.

3. Flexibility In addition to the development of new modules, which is encouraged
by offering simple interfaces, the usage of existing components in new combinations
or for different purposes may provide interesting results and new ways to analyze
and correlate events. For this reason, it should be easy for both operators and
developers to control the configuration of the modules and their interconnections
in the correlation engine.

4. Transparency and Traceability Because of the complex algorithms used for
event correlation and the large amount of data processed by them, it is important to
provide an insight into the data flows and internal data structures of the correlation
engine. Furthermore, such possibilities also facilitate and thereby encourage the
development and debugging of new correlator modules.

5. Reproducibility After detecting an anomaly or any suspicious behavior, it is of-
ten very useful to analyze the received events with different tools, algorithms or
from a different point of view. To support this form of batch analysis on previ-
ously received data, the incoming events must be archived for later access. The
correlation engine, in turn, should be able to simulate the real-time arrival of these
events and process them accordingly.

6. Integration of metadata Often the received events do not indicate their impor-
tance or relevance for the monitored network in general and the target of the attack
in particular. But by using external data sources such as inventory databases or
vulnerability scanners, contextual information about an event and the potentially
affected devices may be obtained, which improves the assessment of an event’s risk
or impact.

4 4

7. Aggregation of events An integral part of any correlation process is the aggre-
gation of events to decrease the amount of data presented to security analysts or
operators. Therefore, a correlation engine should provide mechanisms and special
data structures for the aggregation of events.

8. Prioritization of events Although the previous goal decreases the amount of
events presented to an operator, the amount of data may still be too high for man-
ual review. To avoid the unnecessary analysis of events, another very important
component of event correlation is the assignment of priorities. Based on these pri-
orities, the operator and optionally any notification or reaction modules are able
to decide, whether the respective event requires special attention or even reaction.

2.1.2. Event Representation

After stating the requirements for the PRISM++ correlation engine, we now present its
internal representation of events.

To support the utilization of multiple types of sensors, a subset of common attributes
must be defined, which abstracts from the different event representations. Otherwise,
each correlator module would have to deal with the peculiarities of all supported sensors
and their event formats. The definition of such a subset also facilitates the process of
implementing support for a new type of data source.

Besides some fundamental attributes such as a timestamp, source and destination ad-
dresses, identifiers for the event and a description, support for prioritization and archiv-
ing events must be integrated as well.

Whereas the attributes explicitly allowed for each type of event are specified in the
documentation, the use of additional attributes is not restricted to facilitate the integra-
tion of external data sources such as inventory databases or other metadata.

To represent the aggregation of multiple events based on a similarity metric or other
mechanisms, a special type of event, the meta event, has been implemented. In addition
to the common functionality provided by an event representation, it provides an event
container, which is able to store multiple events of arbitrary types. As meta events
usually contain multiple events, the meta event representation must be able to handle
multiple values for each of its attributes as well.

To ensure maximum flexibility, we also support meta events consisting of meta events
and, thus, even a tree-like, recursive structure of events, as depicted in Figure 2.1, may
be created.

Table 2.1 shows all supported parameters for events. Additionally, metadata may be
stored inside these events as well as a set of references to other events inside meta events.

2.1.3. Architecture of the Correlation Engine

The correlation engine itself consists of instances of correlator modules and interconnec-
tions transporting the internal event representations. Of course, some common subsys-
tems are provided as well.

5 5

Meta Event

Event Container

Meta Event

Event Container

Meta Event

Event Container

Meta Event

Event Container

Event

Event Event Event Event

Event

Figure 2.1.: Tree of meta events

The interconnections themselves are realized as simple FIFO1 queues, which ensure
that the correct order of the events is preserved. As these interconnections are freely
configurable, creating new configurations and integrating additional modules is quite
easy and encourages researchers and security analysts to evaluate various combinations
of correlator modules.

Each correlator module has exactly one input queue, which receives the forwarded
events from all its predecessors. On the other hand, it must be able to support multiple
output queues, for example to distribute events received by data sources to multiple
correlator modules in parallel.

On startup, after initializing some common subsystems, the modules are initialized
and interconnected according to the specified configuration. As soon as this process
has completed, events received by modules representing data sources are forwarded to
their respective successors and thus the event flow through the correlation engine is
established.

The event flow through the modules of the correlation engine may also be used for
distributing signals to all modules, such as a request for termination if the engine shuts
itself down or is forced to do so.

The resulting architecture of the complete correlation engine is depicted in Figure 2.2.

Correlator Modules

The decision to encapsulate most functionality of the correlation engine and especially
the processing of events in modules was primarily driven by the requirements for flexi-
bility and extensibility.

1first in, first out

6 6

Attribute name Description
timestamp Time the event occurred
src ip Source IP(integer)
dst ip Destination IP(integer)
ip protocol IP protocol number
src port Source port for TCP/UDP
dst port Destination port for TCP/UDP
icmp type ICMP type
icmp code ICMP code
prism event type Event type: SNORT — IDMEF — PRISM
prism table name Table the event is stored in
prism event id ID of the event in the table
prism sig id PRISM++’s internal signature ID
sensor gen id Sensor-specific generator ID, e.g. for sensor plugins
sensor sig id Sensor-specific signature ID
sig name Signature name
description Additional information
priority Priority assigned to the event(integer)

Table 2.1.: Attributes of the PrismEventInterface class

While providing a simple, common interface for all correlator modules enables the
free arrangement of modules and their interconnections and, therefore, increases the
flexibility of this approach, the resulting complexity should be hidden from the user.
Consequently, we provided an abstraction layer in the form of a base class for correlator
modules, which hides any activities pertaining to the internal operation of the modules,
for example the transport of events.

Any activity pertaining to receiving and forwarding event objects are implicitly han-
dled by the implementation of this base class and a single method acts as an interface
to all internal activities.

As depicted in Figure 2.3, it gets called for each received event and controls the
forwarding of the event by its return value.

In this method, the correlator module may change almost any aspect of the received
event. It may add, update or remove attributes to it, run algorithms based on its
attributes, influence its priority, cache it for some time to compare it to other events,
write the event to persistent storage or obtain additional data from external sources like
metadata.

To avoid most issues pertaining the temporal order of events, which is especially
relevant for modules with internal caches or time-based correlation, all modules use an
internal clock, which is implicitly updated by the base class and provides a consistent
time reference for each module.

Data sources for the correlation engine are implemented as a special form of correlator
modules as well. While usual correlator modules process and optionally forward the

7 7

Sensor

Correlation Engine

Sensor

Receiver Receiver

Output Notification

Database NotificationsAlerts

Figure 2.2.: Design of the PRISM++ correlation engine

events they received from other modules, data sources forward events received from the
respective sensor and usually do not receive any events from other modules.

Persistence

To store data produced by the correlation persistently, a relational database management
system, specifically PostgreSQL, was used. In addition to the alerts generated by the
correlation engine, it is also used for archiving the events received from its sensors.

Of course, any correlator module will be able to use the database for its internal
data structures or for accessing external data sources as well. Thus we get the benefits
inherently provided by a database, such as the powerful query capabilities of SQL2 as
well as efficient storage of data and fast access to large amounts of data by using the
database’s index functionality.

2Structured Query Language, a standardized language for retrieving and manipulating database records

8 8

Correlation Module

Incoming
Events

Method for handling events

Processed
Events

Figure 2.3.: Functionality of a correlator module

2.2. Webinterface

We created a webinterface for managing the Prism++ correlation engine as well as
easy manual analysis of incoming events and correlated events. It greatly eases the
configuration of the correlation engine, as the configuration of correlation including meta
events is an iterative, manual process where the analyst determines best prioritization
conditions for the meta events.

The start screen of the webinterface is displayed in figure 2.4. It is differentiated
in two basic parts. One the one hand, the webinterfaces supports management of the
correlation engine remotely by editing configurations, and starting and stopping the
correlation process. These functions can be accessed by clicking on the links ‘Manage
Prism++ Configurations’ and ‘Manage Sessions’.

The second category of functions provides methods for displaying and analyzing events.
There, events can be filtered, sorted and grouped to meta events by the analyst. Fur-
thermore, filters and display settings can be saved as ‘views’. On the start screen, these
functions can be accessed by the links ‘List Event Tables’ and ‘Show Saved Views’.

2.2.1. Correlation engine management

A session is configured by the user and represents the interface to the correlation en-
gine. The engine’s configuration is defined using a XML file that contains all relevant
parameters for used modules, and also information about database access.

The single correlation modules listed in the configuration file have predefined functions,
are freely combinable and are executed by the correation engine using multiple threads.
The events are written to a database and then they may be read and displayed by the

9 9

Figure 2.4.: The start screen of Prism++’s web interface

Prism++ web interface.

PRISM++ configurations

Figure 2.5 shows an example of the configuration listing screen within the web inter-
face. Links ‘Add new configuration’ and ‘Edit’ allow the user to add and edit Prism++
configurations.

Figure 2.5.: Management of Prism++ configurations

The edit screen for configurations is displayed in figure 2.6. Each configuration con-
tains four elements:

• Configuration ID: Unique ID number (automatically assigned)

• Configuration: XML based configuration for the correlation engine

• Description: May contain an additional description for the configuration

• Name: Configuration’s name

10 10

Figure 2.6.: Editing a Prism++ configuration

Session Management

By clicking on link ‘Start new Session’ inside the configuration management screen, a new
session may be started. Then the application starts the Python interpreter which starts
the correlation engine with the assigned configuration. All active and inactive sessions
are listed on the ‘Prism++ Session’ page (Figure 2.7). Active sessions may be aborted
by clicking on link ‘Stop’. If the correlation engine needs to be aborted, the web interface
may lag for 10 seconds, as it checks successful termination of the engine. Log files of the
correlation engine are also displayed in this page. Internal cache management sometimes
may cause lags between time of entry logs and display within the web interface.

2.2.2. Analysis of collected events

The web interface allows to visualize found events. Browsing to multiple pages offers
the opportunity to manage high information quantities. Usage of the web interface is
designed to be simple for analysists: it offers multiple views for statistical analysis of
events, filtered and sorted display and personalized display of event lists.

Event table display

Results of the correlation engine are shown in page ‘Event Tables’ by the web interface.
Depending on the navigation in the interface, either all tables are shown (by clicking
on the link in the start screen), or only session-specific tables (by clicking on the links
inside the Prism++ session page).

11 11

Figure 2.7.: Active and stopped correlation engine sessions. Clicking on Session IDs lead
to the tables containing correlated events

Exemplary, Figure 2.8 shows all tables contained in a session. Here events were re-
ceived from Snort, correlated and the events were stored in four Prism++ tables.

Figure 2.8.: Listing of event tables in Prism++

Event listing display

Each entry in the ‘Event Tables’ listing links to the corresponding pages displaying
the event listings. In these pages, occuring events and meta events are displayed with
parameters like time stamp, signature, source IP and destination IP.

Figure 2.9 shows an example, where a listing of Prism++ events is displayed which
contain correlated data. Multiple filters and options can be selected at the top of the
page.

Meta events are aggregatd events of type PRISM. The aggregated events were grouped
by the correlator and stored in the event table. Meta events may represent a vertical or
horizontal port scan, or event signatures from identical source adresses and destination
addresses. Detailed information about the aggregated events can be displayed by clicking
on the link called ‘Details’.

12 12

Figure 2.9.: PRISM++ event display with filter and option fields

Filter

The event listing page offers several possibilities for filtering events and allows the user
to adjust the data view.

Filter for source or destination IP addresses can be set by editing the corresponding
fields, but also by clicking on IP addresses in the event lists. Filters for signatures,
priorities and time stamps may be set accordingly.

The IP addresses are checked for syntactic correctness after input. If the check fails, a
message is displayed at the top of the page. It is possible to enter multiple IP addresses
and to negate IPs using the prefix ‘-’. If we would enter ‘-131.13.1.74’ in the field
filtering the source addresses, all events not originating from IP 131.13.1.74 would be
displayed. Subnet masks can also be specified, like ‘218.202.22.35/24’. Filters for subnets
are implemented for masks going from /2 to /31. Negated IPs, subnet masks and regular
IPs may be combined in the filters.

Options

Some additional options can also be used in the event listing page:

• Displayed Rows: Allows the adjustment of the number of events displayed in one
page. Elements for navigating multiple pages are added at the bottom of the page
if necessary.

• Select View Modes: Event lists may be statistically aggregated and displayed,
therefore the interface provides the views ‘Top signatures’, ‘Top source IPs’, ‘Top
destination IPs’ and ‘Top IP pairs’.

13 13

• Select Options: By selecting ‘Live mode’, the user may switch the web interface
to the Live mode, that enables the web interface automatic page refreshes. This is
useful for viewing tables that are being filled by the correlator at the same time.
In this menu, filters may also be removed

• Show Hidden Columns: Displayed columns may be adjusted: non-visible columns
that are available in the current view are listed in this menu. If a column is selected,
it is added to the event table. Figure 2.10 shows an example of this menu. Current
sorting preferences are displayed at the side of the column names at the top of the
event table. By clicking on the column names, sorting preferences may be changed.

Figure 2.10.: Hidden columns may be added to the table again

Views

So-called ‘views’ may be saved by setting a name inside the event listing page for the
current view and clicking on the button ‘Save’. Then the interface saves all current view
settings inside the database. All saved views can be accessed by the link ‘Show Saved
Views’ in the web interfaces’ start screen. The resulting page is displayed in Figure 2.11.
All saved views are listed in this table and by selecting the views, the stored views can
be displayed again. Note that only display parameters and source event table are stored
in the views. If the displayed table’s contents have changed since, the view will display
different data.

The current display of a page may also be applied to other tables by clicking on link
‘Apply View to different Table’.

14 14

Figure 2.11.: Selection of saved views

3. Installation

This chapter describes the installation steps necessary for installation and execution of
the correlation engine and the web interface.

3.1. Correlation engine

1. The following applications and libraries are needed for the correlation engine:

• python (>= 2.5)

• postgresql (>= 8.3)

• python-4suite-xml

• python-pydot

• python-dns

• python-ipy

• python-pygresql

2. setup PostgreSQL by creating an appropriate user for the correlation engine

3. setup tables in PostgreSQL by using script prismpp.sql

4. create configuration file, examples can be found in directory correlator/config

5. go to directory correlator

6. start engine with command python start.py <configuration file>

3.2. Webinterface

1. The following applications and libraries are needed for the web interface:

• python (>= 2.5)

• postgresql (>= 8.3)

• apache2

• libapache-mod-python

• python-4suite-xml

• python-pydot

• graphviz

16 16

• rrdtool

• python-cheetah

• python-dns

• python-ipy

• python-pygresql

• an installed version of Prism++ correlator including database setup

2. copy configuration file webinterface/prismpp.conf.template to
webinterface/prismpp.conf and

• insert DB credentials of already created Prism++ database

• update command line for executing the Prism++ correlation engine

3. execute Makefile in directory webinterface/removesigmasks with command make

4. copy files and subdirectories in directory webinterface to a location accessible by
Apache

5. use file webinterface/apache-sample.conf.template as template for Apache’s
configuration

6. launch browser and access URL configured in Apache

4. Structure and Configuration

4.1. Correlation engine

Configuration

The configuration of the correlation engine is controlled by a XML file, which contains
both global parameters relevant for all modules and a specific section for each module
instance.

While the global parameters are accessible by all components of the correlation engine
and, therefore, contain information such as the credentials for accessing the PRISM++
database, the module configuration contains all modules used in the correlator including
their specific configuration and information on their interconnections.

<PrismPPConfig>
<GlobalConfig>
 [...]
</GlobalConfig>
<ModuleConfig>
 <SnortDataSource id=”1”>
 [...]
 <next_module value=”2” /> (1)
 <next_module value=”3” /> (2)
 </SnortDataSource>
 <AttackThreadDetector id=”2”>
 [...]
 <next_module value=”4” /> (3)
 </AttackThreadDetector>
 <ScanDetector id=”3”>
 [...]
 <next_module value=”4” /> (4)
 </ScanDetector>
 <AlertDBWriter id=”4”>
 [...]
 </AlertDBWriter>
</ModuleConfig>
</PrismPPConfig>

SnortDataSource
(id=1)

AttackThreadDetector
(id=2)

ScanDetector
(id=3)

AlertDBWriter
(id=4)

(1) (2)

(3) (4)

Figure 4.1.: PRISM++ configuration and module interconnections

Basically interconnections between modules are set up by using the special parameter
next_module, which contains the ID of a module to which all outgoing events should
be forwarded. The parallel forwarding of all events to multiple successors is realized by
simply assigning multiple module IDs to this parameter.

A simple PRISM++ configuration and the results of the respective statements on the
interconnection of the modules is outlined in Figure 4.1.

The simple example in Figure 4.2 demonstrates the inheritance of global parameters
and the internal data structure provided to each module after parsing the XML file.

18 18

<GlobalConfig>
 <db_user>DB_USER</db_user>
 <db_password>DB_PASSWORD</db_password>
</GlobalConfig>
<ModuleConfig>
 <IDMEFDataSource id=“1“>
 <next_module value=“2“ />
 <next_module value=“3“ />
 </SnortDataSource>
 <AttackThreadDetector id=“2“>
 <active_timeout>15</active_timeout>
 <passive_timeout>5</passive_timeout>
 <next_module value=“4“ />
 </AttackThreadDetector>
 <ScanDetector id=“3“>
 <host_threshold>10</host_threshold>
 <next_module value=“4“ />
 </ScanDetector>
 <AlertDBWriter id=“4“>
 </AlertDBWriter>
</ModuleConfig>

IDMEFDataSource(id=1):
db_user = list(DB_USER)
db_password = list(DB_PASSWORD)
next_module = list(2, 3)

AttackThreadDetector(id=2):
db_user = list(DB_USER)
db_password = list(DB_PASSWORD)
active_timeout = list(15)
passive_timeout = list(5)
next_module = list(4)

ScanDetector(id=3):
db_user = list(DB_USER)
db_password = list(DB_PASSWORD)
host_threshold = list(10)
next_module = list(4)

AlertDBWriter(id=4):
db_user = list(DB_USER)
db_password = list(DB_PASSWORD)

Figure 4.2.: Data structure for module configuration

The parameters set in the GlobalConfig section are inserted into all module-specific
configurations and thereby provide a convenient way of defining parameters such as
database credentials or the log level globally. To identify them in the figure, they are
written in italic letters.

Another important property is the representation of all parameters by lists, regardless
of their cardinality. This simplifies the parsing process and ensures maximum flexibility.

4.1.1. Database Schema

The database schema of the PRISM++ correlation engine is outlined in Figure 4.3.

4.1.2. Configuration

An overview of the configuration parameters for all correlator modules and for specific
modules is presented in the following section.

Global Parameters

Parameter Description

prism db hostname Hostname of the PRISM++ database server
prism db database Name of the PRISM++ database
prism db username Username for the PRISM++ database
prism db password Password for the PRISM++ database
log level Log level for the logging subsystem

Table 4.1.: Global parameters of the PRISM++ correlation engine

19 19

prism_sessions

PK prism_session_id

user
hostname
start_time
end_time
config_file

prism_event_tables

PK event_table_id

event_type
prism_sensor_id

prism_sensors

PK prism_sensor_id

sensor_type
hostname
original_sensor_id
interface

prism_signatures

PK prism_sig_id

sig_type
sig_name
gen_id
sig_id

prism_event_0001

PK prism_event_id

prism_sensor_id
prism_event_type
prism_sig_id
timestamp
src_ip
dst_ip
ip_protocol
src_port
dst_port
description
raw_data
priority

prism_event_rel_0001

PK alert_event_id
PK raw_event_table_id
PK raw_event_id

priority

Figure 4.3.: PRISM++ database schema

Global parameters are propagated to all correlator modules and, therefore, provide an
easy way to specify the database credentials for the PRISM++ database, which are used
by various components. Table 4.1 shows a listing of currently used global parameters.

Data Sources

The main task of a correlation engine is the analysis of incoming events. Because a
variety of different intrusion detection sensors exist and most of them are unfortunately
not supporting standards like IDMEF yet, the design of all components involved in the
reception of events should be kept simple to facilitate the implementation of support for
new data sources.

As an important goal of the PRISM++ correlation engine is reproducibility and the
support for both operation in real time and later in-depth analysis of the same data, all
events arriving at the correlation engine must be archived for later reference. Further-
more, the process of normalization must be conducted on each incoming event.

Although the architecture of a data source depicted in Figure 4.4 is not mandatory,
it is used by the two modules implemented so far.

It consists of an event receiver, which normalizes all incoming events by converting
them to their internal representation, and a database writer, whose task is to store all
received events in the PRISM++ database.

20 20

Data Source

Event
Receiver

Events

DB
Writer

Correlation
Modules

Figure 4.4.: Architecture of a PRISM++ data source

The method used by the event receiver for initializing the internal representation of
an event is usually implemented by the respective subclass for the received event type.

If no archiving of the received events would be required, their normalized represen-
tation could be directly forwarded to any other correlator module. But in addition to
the disadvantage that no subsequent analysis of the received events would be possible,
the current mechanism for storing alerts described in section 4.1.2 relies on a persistent
storage of the correlated events.

Therefore, this configuration is currently not supported and a data source must contain
an event writer. Its event processing consists solely of writing the events to a database
and assigning the resulting reference information to the respective attributes. Each event
received by a PRISM++ data source is thereby uniquely identified by the table in which
the event is stored and the prism_event_id, which is unique in each table.

After outlining the fundamental architecture of a data source in PRISM++, we now
present the two currently implemented data sources.

SnortDataSource There are various methods for obtaining generated alerts from Snort
instances, but most of them either involve parsing text files or even binary files in the
case of the unified log format. The Prelude output plugin would require an additional
implementation based on the libraries for its protocol as well.

The output plugin for databases, however, provides easy access to all data without
additional implementation effort.

Based on these facts, the SnortDataSource module, a PRISM++ data source for
receiving Snort alerts by accessing a PostgreSQL database, was implemented.

According to the proposed architecture for data sources already described, the Snort-
DataSource consists of a SnortDBReader instance, which fetches the alerts from the
Snort database, and a SnortEventWriter for storing the received events in the PRISM++
database.

21 21

Parameter Description

receiver db hostname Hostname of Snort database
receiver db username Username of Snort database
receiver db password Password for database access
receiver db sslmode Used SSL mode for database connection (usually ‘require’)
prism sensor id Assigned sensor ID for this Snort instance inside Prism DB
snort sensor id Sensor ID of Snort instance, which events should be used as

input (most of the time 1)
batch mode Set to ‘1’, if Prism++ stops if end of events is reached. Set to

‘0’ if Prism++ should continue looking for events
timerange begin Specifies time, from which on events should be read from

database. Example ‘2008-08-20T23:00:00’

Table 4.2.: Parameters for module SnortDataSource

The SnortDBReader exists in two versions, the SnortLiveDBReader and the Snort-
BatchDBReader.

While the first module periodically fetches new alerts from Snort’s database and,
therefore, is suited for real-time operation, the SnortBatchDBReader reads all Snort
alerts from the database specified in the module’s configuration with a single query and
terminates afterwards. Its main use case is the import of Snort alerts into the PRISM++
database in collaboration with a SnortEventWriter.

To determine the current position in the database and to assure that every record is
only fetched once, Snort’s event ID is used and each SnortDBReader instance stores the
next ID expected internally.

Consequently, this has to be detected by the initialization method of the SnortEvent
class, which raises an exception indicating this situation. The receiver module, in turn,
stops its processing of the remaining events and waits for the configured query interval.
In the next iteration, it should then be able to initialize the event correctly.

Another issue results from the fact that Snort sometimes writes alerts to the database
in an order which is not consistent with respect to the timestamp of the events. As we
are using the event ID to avoid duplicate or missing events and thus receive all events
in the order of their ID, the temporal order of the event stream would be violated.

After the events are received and normalized by the SnortDBReader modules, the re-
sulting SnortEvent objects are forwarded to the SnortEventWriter module, which stores
each SnortEvent in the PRISM++ database and thereby makes it persistent.

On startup, a SnortDataSource instance requests a new event table from the Table-
Manager before processing any events. All events subsequently received by this module
are then written to this table.

To provide a unique identification for Snort signatures across different Snort instances
and databases, for each received event, a prism_sig_id for this signature is looked up
and assigned to the event. If the Snort signature is not yet known to PRISM++, a new
record for this signature is created in the PRISM++ database and the resulting ID is
used. This process relies on unique signature IDs coming from Snort with a specified
sensor ID. If Snort’s internal ID assignment does not produce unique signature IDs any

22 22

more (like when completely deleting Snort’s internal database structure), Prism++ will
not be able to determine the correct signature name by only a signature ID. Users must
make sure that this case does not happen.

After the event has been written to the database, it is uniquely identified by the
respective table name and the ID of the event in this table. Finally the event is forwarded
to subsequent correlator modules.

IDMEFDataSource The module IDMEFDataSource is capable of receiving IDMEF
messages via HTTP on port 8888. This data source also follows the architecture pre-
sented in Figure 4.4 and consists of an IDMEFReceiver and an IDMEFEventWriter.

IDMEF is a very comprehensive and complex message format for describing intrusion
detection alerts in detail. Consequently, the effort for implementing a complete parser
for its data structure presented in section IDMEF should not be underestimated.

For our purposes, a support for the basic attributes of an IDMEF message such as
the timestamp, source and destination IP addresses and the classification of the event is
sufficient.

Similar to the SnortEventWriter, a IDMEFEventWriter receives IDMEFEvent objects
from the IDMEFReceiver module and writes them to the database for later reference.

The table for these events is created by requesting it from the TableManager.
To provide a unique identification of IDMEF messages from different sensors, according

to the IDMEF RFC, the ident attribute of the alert’s classification should contain a
unique identifier for each alert classification [DCF07]. Unfortunately this attribute is
marked as optional and only the text attribute is mandatory.

For uniquely identifying the signature used within PRISM++ with the help of the
SignatureManager, we have to use a workaround for this issue and, therefore, use the
text attribute for unique signature identification, if the alert contains no value for the
identification attribute.

Finally, the IDMEF events are written to the respective event table, the attributes for
uniquely identifying the event, the event table’s name and the respective event ID, are
assigned and the IDMEFEvent object is forwarded to the next correlator module.

PrismEventReader An important feature of the PRISM++ correlation engine is the
batch analysis of already received events. This enables security analysts and researchers
to analyze the events in detail or to search for patterns and anomalies with different
configurations of the correlation engine or its modules.

The functionality of retrieving archived events from the PRISM++ database is realized
by the PrismEventReader class, which fetches events from one or more tables, forwards
them and thereby simulates the arrival of the respective events in real time.

The artificial field assigning the table ID to the field table_id is required to represent
the location of each event in the database and for the correct initialization of the event’s
prism_table_id attribute.

For each event resulting from the query, the event type is determined by the field
prism_event_type and an according instance for its representation is created.

23 23

Correlation Modules

After presenting the common subsystems and the data sources for receiving or recon-
structing the flow of intrusion detection events, the actual correlator modules are pre-
sented.

Each of these modules analyzes incoming events using a specific algorithm, tries to
identify patterns and generates alerts if it is successful. Another purpose of such modules
is the aggregation and prioritization of events to reduce the number of alerts presented
to an operator.

To facilitate the actual implementation of the modules, some common data structures
useful for at least some of these algorithms were created.

InclusiveEventFilter and ExclusiveEventFilter To analyze events related to specific IP
addresses or representing the detection of a specific signature, two filter modules were
implemented.

Parameter Description

prism sig id PRISM’s internal ID for a signature
src ip filter Matching source IP addresses or networks
dst ip filter Matching destination IP addresses or networks
ip filter Matching IP addresses or networks source or destination
priority from filter Minimum priority value for events
priority to filter Maximum priority value for events

Table 4.3.: Parameters for modules InclusiveEventFilter and ExclusiveEventFilter

As all parameters are implicitly realized as lists, which was already stated in section
4.1, matching multiple values for one parameter type is possible by simply specifying
the parameter multiple times in the module’s configuration.

The InclusiveEventFilter forwards only events matching its filter conditions to sub-
sequent correlator modules, while the ExclusiveEventFilter removes all matching events
and forwards only events, which do not match its filters.

Parameter Description

active timeout Active timeout in seconds that specifies the maximum time of
entries to be buffered

passive timeout Passive timeout in seconds that specifies the minimum time
of entries to be buffered. They are exported as soon as pas-
sive timeout seconds no event was added to the entry.

Table 4.4.: Parameters for module AttackThreadDetector

AttackThreadDetector The idea and the name for this module’s correlation algorithm,
attack thread reconstruction, was taken from Fredrik Valeur’s PhD thesis [Val06] and the
article published by him and his colleagues at the University of California, Santa Barbara

24 24

[VVKK04]. It represents an aggregation of all events having the same originator and
the same target in a time period up to a configurable timeout.

Consequently this algorithm only supports events having a single source and desti-
nation IP address and if an event violating this constraint is received, an exception is
raised.

To temporarily store the events, the AttackThreadDetector uses both common data
structures described previously, the EventStorage and the MetaEventStorage class. For
each incoming event, a cache of already detected attack threads, which is implemented
using a MetaEventStorage instance, is queried for a matching event. If this search is
successful, the incoming event is merged with the existing meta event representing this
attack thread. Otherwise, the cache of recently received event objects realized by an
EventStorage instance, is searched for events with source and destination IP addresses
identical to the attributes of the incoming event. If a corresponding event is found, a
new attack thread instance, including both the event just received and the one from
the cache, is created and the representation of the resulting meta event is stored by the
MetaEventStorage instance.

To control the behavior of this algorithm, two parameters are available. While the
active_timeout has an influence on the maximum length of an attack thread, regardless
of any ongoing activity, the passive_timeout represents the time period after which an
attack thread supposedly ended because no further activity occurred.

Consequently, the active timeout must be higher than the passive timeout to guarantee
correct functionality. This constraint is ensured by the module’s implementation and an
exception is raised if it is violated.

Both parameters have an influence on the time period, for which events may be kept
in this correlation module. While the passive timeout has a mostly irrelevant influence
on the time an event remains in the AttackThreadDetector module, the active timeout
represents the maximum time any event is kept in this module. This has to be con-
sidered, if subsequent correlator modules are using caches or timeouts as well, because
the temporal order of the events leaving this module may be broken depending on the
detected attack threads.

Parameter Description

active timeout Active timeout in seconds that specifies the maximum time of
entries to be buffered

passive timeout Passive timeout in seconds that specifies the minimum time
of entries to be buffered. They are exported as soon as pas-
sive timeout seconds no event was added to the entry.

host threshold Multiple entries are aggregated to a ‘Scan’ metaevent, as soon
as at least this number of entries would be aggregated.

Table 4.5.: Parameters for module ScanDetector

ScanDetector To detect attacks from one originator to multiple destinations, which are
often some form of a scan, we implemented a ScanDetector. The idea and the algorithm

25 25

for this module was also taken from Valeur’s PhD thesis, who named the component
containing this algorithm attack focus recognition and calls the specific pattern of activity
often originating from scanning activity the one2many scenario [Val06]. It tries to detect
source hosts which cause events directed to a large number of targets.

Because of the algorithm currently used for this module, it supports no events with
multiple source or destination addresses and raises an exception if such an event is
received.

For each received event, it is first checked if a scan coming from its source IP was
already detected. In this case, the event is added to the list of events associated with
this scan.

The number of destination hosts required to classify the activity as a scan is controlled
by the parameter host_threshold. To control the temporal aspects of the algorithm,
the parameters for active and passive timeout already described previously can be used.

The potential impact on the temporal order of the forwarded events must be considered
for this module as well.

Parameter Description

active timeout Active timeout in seconds that specifies the maximum time of
entries to be buffered

passive timeout Passive timeout in seconds that specifies the minimum time
of entries to be buffered. They are exported as soon as pas-
sive timeout seconds no event was added to the entry.

host threshold Multiple entries are aggregated to a ‘DistributedAttack’
metaevent, as soon as at least this number of entries would be
aggregated.

Table 4.6.: Parameters for module ScanDetector

DistributedAttackDetector To detect attacks coming from various hosts and focusing
on one specific target, a DistributedAttackDetector, which is essentially a ScanDetector
detecting activity in the contrary direction, was developed as well. This kind of algorithm
is especially useful to detect distributed denial-of-service(DDoS) attacks1 and to identify
the botnets2 often used for such activities.

To implement a correlation algorithm for detecting this type of behavior, the source
code for the ScanDetector module was copied and slightly modified to adapt it to its
new task.

Thus, the fundamental architecture and design largely resembles the ScanDetector
class. Because of the similar algorithm, it also raises an exception on the arrival of an
event with multiple source or destination IP addresses.

The parameters supported by this module are identical to the ones offered by the
ScanDetector.

1attacks on one target by a large number of hosts, usually used to cause overload on a system
2large networks of infected systems posing a serious threat

26 26

Parameter Description

cache timeout Defines how long DNS hostnames are to be buffered to avoid
multiple DNS requests

query timeout DNS query timeout

Table 4.7.: Parameters for module DnsResolver

DnsResolver The DnsResolver module tries to resolve the associated names for the
source and destination IP addresses of each incoming event by querying the Domain
Name System(DNS).

If the DNS lookup is successful, the hostnames for the source and destination IP
addresses are written to the respective attributes src_hostname and dst_hostname.
Otherwise, an empty string is assigned to the attribute.

To further improve the performance of the correlation module, a very simple cache
for already retrieved mappings of IP addresses to hostnames was implemented. Ob-
solete entries in this cache are avoided by a timeout mechanism, which removes each
entry after 600 seconds. Of course, this timeout may be changed as well by setting the
cache_timeout parameter.

RipeCountryResolver Another potentially valuable information based on IP addresses
is the location of the respective hosts. Although this information may be incorrect
because of proxy servers or VPN systems, it provides at least some hints to the real
location of the system.

The data for determining the country code for an IP address was extracted from the
databases provided by the agencies allocating ranges of IP addresses to organizations
or individuals. The location of these databases and some hints for processing them was
found in the documentation of the IP::Country3 Perl module.

By processing these databases with the help of the ipcc_loader script, which is also
provided by the IP::Country module, a text file containing the network address, the size
of the network and the two-letter country code for each currently assigned IP network
is created.

This text file is then parsed by a simple Perl script and for each IP network, a record
is inserted into the table ip_to_country outlined in Figure 4.5

The IP address of the network and its size are stored in the fields net_address and
net_size, while the country code for the respective network is assigned to the country
field. Although the two additional attributes first_address and last_address contain
redundant information, they facilitate the database query.

The RipeCountryResolver module itself just looks up the corresponding entries for
the source and destination IP addresses in the previously populated table and assigns
the resulting two-letter country code to the attributes src_country and dst_country.

3http://search.cpan.org/ nwetters/IP-Country-2.24/

27 27

ip_to_country

PK net_address

net_size
first_address
last_address
country

Figure 4.5.: Database table containing the country mapping for IP addresses

MetadataResolver The MetadataResolver module adds metadata to incoming events.
For each event’s source and destination IP, the module looks up the following metadata
per host:

• operating system

• critflags (both data for flag names and assignment to IP addresses have to be
inserted by user)

• open ports

• time since last reboot

• router hops to machine

All metadata is stored in tables inside Prism++ database. These tables are cre-
ated using the default Prism++ database creation script. Several scripts in directory
metadata scripts allow easy insertion and modification of the contents of the metadata
tables.

The module assumes that all metadata tables are located directly inside the default
Prism++ database, so the global parameters for database access are used.

Prioritizing Module

After adding available metadata to events and correlation, i.e. aggregating and grouping
them, all generated meta events need to be checked for relevancy. This is done by
analyzing all events thoroughly, and, depending on their content, the meta events are
assigned a priority. This task is performed by module MetaEventPrioritizer.

Priorities are configured by specifying Python code that analyzes all single events
contained in meta events. Each single event is assigned a priority. Meta events, which
may consist of multiple events, get the summed priority of all contained single events.

The Python code defined in parameter prio_code may access all fields in the events.
These parameters are:

28 28

Parameter Description

prio code Defines Python code for prioritizing all incoming events

Table 4.8.: Parameters for module DnsResolver

• prio: Priority of the event

• ipsrc: Source IP

• ipdst : Destination IP

• ipproto: Used Protocol

• signame: name of signature (usually Snort signature names)

• srcport : Source port (if available)

• dstport : Destination port (if available)

• desc: Description of event

• srcmetaflags: Critflags for source IP coming from metadata

• dstmetaflags: Critflags for destination IP coming from metadata

The value contained in variable prio is assigned as the final event’s priority value.
Section A.1 in the appendix shows a complete example for a Prism++ configuration
including configuration of module MetaEventPrioritizer.

Output and Notification Modules

All correlator modules presented so far process incoming events according to their al-
gorithm, filter or aggregate them and inject additional information. But the results
produced by them have to be communicated to an operator or other systems. Addition-
ally, they should be stored persistently to enable later in-depth analysis.

Currently two modules of this class are available, the AlertDBWriter and the Mail-
Notifier.

AlertDBWriter The alert writer is a rather simple component which maps the events
and their data to database fields and creates a record for each received event. Parameters
are not needed for this module, as the default database is used as destination.

As we focused on simple interfaces throughout the design of the correlation engine
and the adjoining database wherever possible, a shared database schema is used for raw
events and for alerts.

The meta event itself is stored in the database by inserting it as an ordinary event with
a special type. All aggregated events in its container are already stored in the database

29 29

because of the functionality required by each data source implementation. Thus, for each
aggregated event a record representing the association with its meta event is inserted.

Of course, some additional issues regarding the storage of meta events arise. For
example, the issue of meta events using sets for various attributes is currently represented
by setting the respective fields to NULL in the database. To determine the members
of the set for a specific attribute, the process accessing the alerts needs to recursively
traverse the events aggregated in the meta event.

MailNotifier To notify a security analyst or an operator in real time, we implemented a
MailNotifier module which sends an email if a arriving event or meta event has a priority
higher than a configurable threshold.

Although this rather simple form of real-time notification would need various im-
provements for operational usage, it demonstrates the principal possibilities offered by
the real-time event processing of the correlation engine.

Modules for Debugging

EventSniffer A very useful tool for monitoring the event flow through the individual
modules and their interconnections is the EventSniffer module.

Its output is directed to a file in the session directory of the currently active session
of the correlation engine. By setting the only_metaevents parameter to 1, only meta
events are logged.

EventInjector The EventInjector module is essentially just a template which demon-
strates the ability to inject arbitrary events at any position in the module graph.

4.2. Webinterface

To provide easy access to the alerts generated by the PRISM++ correlation engine,
a simple web-based user interface has been implemented, which is able to present the
archived events received by sensors as well as the alerts generated by the correlation
engine itself.

To demonstrate the ability to generate real-time notifications as well, we implemented
a simple notification module, which sends an email to an operator, if an alert with a
priority exceeding a configured threshold occurs.

A. Appendix

A.1. Example configuration

This section shows a complete configuration example for Prism++. Snort events are
read from Snort’s database in batch mode beginning at time 2008-08-20 at 23:52:12.
The following procedure is performed for each incoming event:

1. Resolve available metadata

2. Get RIPE country for source and destination IP

3. Set Events’ priority to 1

4. Write events to table

5. Perform correlation on events: detect attack threads, distributed attacks and scans

6. Perform priotization on meta events

7. Write events to table

1 <PrismPPConfig >

2 <SystemConfig >

3 <max_queue_size >10000 </max_queue_size >

4 </SystemConfig >

5 <GlobalConfig >

6 <prism_db_hostname >localhost </prism_db_hostname >

7 <prism_db_username >prismpp </prism_db_username >

8 <prism_db_password >password </prism_db_password >

9 <prism_db_database >prismpp </prism_db_database >

10 <prism_db_sslmode >require </prism_db_sslmode >

11 </GlobalConfig >

12

13 <ModuleConfig >

14 <SnortDataSource id="10">

15 <receiver_db_hostname >localhost </↘
→receiver_db_hostname >

16 <receiver_db_username >snort </↘
→receiver_db_username >

17 <receiver_db_password >password </↘
→receiver_db_password >

18 <receiver_db_database >snort </↘
→receiver_db_database >

19 <receiver_db_sslmode >require </↘
→receiver_db_sslmode >

31 31

20 <prism_sensor_id >1</prism_sensor_id >

21 <snort_sensor_id >4</snort_sensor_id >

22 <batch_mode >1</batch_mode >

23 <next_module value="20" />

24 <timerange_begin >2008 -08 -20 T23:52:12 </↘
→timerange_begin >

25 </SnortDataSource >

26

27 <MetadataResolver id="20">

28 <next_module value="25" />

29 </MetadataResolver >

30

31 <RipeCountryResolver id="25">

32 <next_module value="27" />

33 </RipeCountryResolver >

34

35 <MetaEventPrioritizer id="27">

36 <prio_code >

37 # inside the prio_code tags , Python code must be specified. Correct

38 # indentation is essential for Python , so unfortunately the XML files

39 # indentation rules cannot be followed

40

41 # this module does not do anything: it just sets the current

42 # priority of events to 1

43 prio = 1

44 </prio_code >

45 <next_module value="28" />

46 </MetaEventPrioritizer >

47

48 <AlertDBWriter id="28">

49 <next_module value="31" />

50 </AlertDBWriter >

51

52 <AttackThreadDetector id="31">

53 <active_timeout >1800</active_timeout >

54 <passive_timeout >600</passive_timeout >

55 <next_module value="32" />

56 </AttackThreadDetector >

57

58 <DistributedAttackDetector id="32">

59 <active_timeout >1800</active_timeout >

60 <passive_timeout >600</passive_timeout >

61 <host_threshold >5</host_threshold >

62 <next_module value="34" />

63 </DistributedAttackDetector >

64

65 <ScanDetector id="34">

66 <active_timeout >1800</active_timeout >

67 <passive_timeout >600</passive_timeout >

68 <host_threshold >5</host_threshold >

69 <next_module value="36" />

70 </ScanDetector >

71

72 <MetaEventPrioritizer id="36">

32 32

73 <prio_code >

74 # prio: old priority of event

75 # ipsrc: source ip

76 # ipdst: destination ip

77 # ipproto: protocol

78 # signame: name of signature (mostly snort signature names)

79 # srcport: source port

80 # dstport: destination port

81 # desc: description

82 # srcmetaflags: meta critflags for source ip

83 # dstmetaflags: meta critflags for destination ip

84 prio = 1

85

86 # Prioritize keywords

87 keyword_prioritization = [

88 ("COMMUNITY MISC BAD -SSL tcp detect", 0.01),

89 ("COMMUNITY SIP TCP/IP message flooding directed to SIP proxy",↘
→ 0.02),

90]

91 for (keyword , value) in keyword_prioritization:

92 if signame.find(keyword) != -1:

93 prio = value

94

95 if ipdst ==’1.2.3.4 ’ and signame in ("COMMUNITY WEB -ATTACKS GFI ↘
→MailSecurit

96 y Management Host Overflow Attempt Long Accept Parameter", "COMMUNITY ↘
→BOT GTBot

97 info command"):

98 prio = 0.01

99

100 if ’server ’ in (srcmetaflags.keys() + dstmetaflags.keys()):

101 prio *= 10

102 if ’noincoming ’ in dstmetaflags:

103 prio = prio *1000+1000 # this should never happen!

104

105 if ’nfs’ in srcmetaflags and ’nfs’ in dstmetaflags and signame in ("↘
→COMMUNITY MI

106 SC BAD -SSL tcp detect", "COMMUNITY SIP TCP/IP message flooding directed ↘
→to SIP p

107 roxy"):

108 prio = 0.001

109 </prio_code >

110 <next_module value="40" />

111 </MetaEventPrioritizer >

112

113 <AlertDBWriter id="40">

114 </AlertDBWriter >

115

116 </ModuleConfig >

117 </PrismPPConfig >

Bibliography

[DCF07] H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection Message
Exchange Format (IDMEF). Technical Report RFC 4765, IETF, March
2007.

[KVHD06a] Jochen Kaiser, Alexander Vitzthum, Peter Holleczek, and Falko Dressler.
Automated resolving of security incidents as a key mechanism to fight mas-
sive infections of malicious software. In GI SIDAR International Conference
on IT-Incident Management and IT-Forensics (IMF 2006), volume LNI P-
97, pages 92–103, Stuttgart, Germany, October 2006. Springer.

[KVHD06b] Jochen Kaiser, Alexander Vitzthum, Peter Holleczek, and Falko Dressler.
Ein Sicherheitsportal zur Selbstverwaltung und automatischen Bearbeitung
von Sicherheitsvorfällen als Schlüsseltechnologie gegen Masseninfektionen.
1st GI SIG SIDAR Graduate Workshop on Reactive Security (SPRING),
July 2006.

[Val06] Fredrik Valeur. Real-Time Intrusion Detection Alert Correlation. Ph.d.
thesis, UC Santa Barbara, June 2006.

[VVKK04] Fredrik Valeur, Giovanni Vigna, Christopher Kemmerer, and Richard
Krügel. A Comprehensive Approach to Intrusion Detection Alert Correla-
tion. IEEE Transactions on Dependable and Secure Computing, 1(3):146–
169, 2004.

	1 Introduction
	2 Prism++
	2.1 Correlation engine
	2.1.1 Requirements
	2.1.2 Event Representation
	2.1.3 Architecture of the Correlation Engine

	2.2 Webinterface
	2.2.1 Correlation engine management
	2.2.2 Analysis of collected events

	3 Installation
	3.1 Correlation engine
	3.2 Webinterface

	4 Structure and Configuration
	4.1 Correlation engine
	4.1.1 Database Schema
	4.1.2 Configuration

	4.2 Webinterface

	A Appendix
	A.1 Example configuration

