
!

“monk-it”

Vermont Documentation

University of Erlangen
Computer Networks and Communication Systems

and Regional Computing Center

Authors

Tobias Limmer
Falko Dressler

23.12.2008

Contents

1. Overview 1
1.1. Vermont . 1

1.1.1. Reconfiguration . 1
1.1.2. Situation Awareness . 3

1.2. Vermont Management . 4
1.2.1. Controller . 5
1.2.2. Manager . 6
1.2.3. Webinterface . 6

2. Installation 9
2.1. Vermont . 9
2.2. Vermont Management . 10

3. Structure and Configuration 11
3.1. Vermont . 11

3.1.1. IDMEFExporter . 12
3.1.2. IpfixAggregator . 13
3.1.3. IpfixCollector . 15
3.1.4. IpfixExporter . 15
3.1.5. IpfixPrinter . 16
3.1.6. IpfixDbReader . 17
3.1.7. IpfixDbWriter . 17
3.1.8. IpfixDbWriterPg . 18
3.1.9. IpfixPayloadWriter . 19
3.1.10. IpfixQueue . 20
3.1.11. Observer . 20
3.1.12. PacketFilter . 21
3.1.13. PacketQueue . 23
3.1.14. PacketAggregator . 23
3.1.15. PacketIDMEFReporter . 24
3.1.16. PCAPExporter . 25
3.1.17. PSAMPExporter . 25
3.1.18. RecordAnonymizer . 27
3.1.19. SensorManager . 28
3.1.20. TRWPortscanDetector . 28

3.2. Vermont Management . 30

iii iii

3.2.1. Manager . 30
3.2.2. Controller . 31
3.2.3. Webinterface . 32
3.2.4. Sensor-Actor System . 32

A. Appendix 36
A.1. Example configuration of a closed loop within a Vermont instance 36

1. Overview

This document describes Versatile Monitoring Toolkit (Vermont) and the Vermont man-
agement infrastructure. The following sections give an overview of both systems. After-
wards, a detailed description of each system is presented.

1.1. Vermont

Vermont [LSMD06] is an open-source monitoring toolkit capable of processing Netflow.v9
and Internet Protocol Flow Information Export (IPFIX) conforming flow data. It has
been developed in collaboration with the University of Tübingen[DC05]. The application
runs on Linux and derivatives of BSD. It can receive and process raw packets via Packet
Capturing (PCAP) (up to 1 GBit/s) as well as IPFIX/Netflow.v9 flow data. Supported
data formats for export are IPFIX [Cla08, QBC+08], Packet Sampling (PSAMP) [Cla07,
DCA+08], and Intrusion Detection Message Exchange Format (IDMEF) [DCF07]. The
following modules are available:

• Importers capture raw data via PCAP, receive Netflow.v9 and IPFIX flow data
via UDP and Stream Control Transmission Protocol (SCTP)

• Samplers and filters provide sampling algorithms and packet filter definitions

• Exporters export data using IPFIX, PSAMP, or IDMEF

• Aggregators aggregate incoming data according to customizable rules [DM06,
DSMK08]; BiFlows [BT08] are also supported

• Analyzers detect anomalies in flows and output IDMEF events

Modules can be linked in almost any combination: only the input and output data
type of linked modules need to be compatible. Modules may also have more than one
succeeding and preceding module. Figure 1.1a shows an example for an arrangement of
several modules. In this configuration, Vermont captures packets using PCAP, filters
these packets and exports the selected PSAMP records. A second branch aggregates
flows, which, in turn, are exported using IPFIX and analyzed in a portscan detector,
respectively.

1.1.1. Reconfiguration

A special feature of Vermont is its support for dynamic reconfiguration of the module
structure [LD09]. Linked modules in Vermont correspond to a directed acyclic graph
and operate independently from each other.

2 2

 Vermont
Observer

PacketFilter
Packet

Aggregator

PSAMP
Exporter

IPFIX
Exporter

PSAMP data IPFIX flows

raw packets via PCAP

Queue
Portscan
Detector

IDMEF
Exporter

IDMEF events

(a) Sample module graph

ObserverCfg

CfgNode

QueueCfg

2

34
Observer

QueueCfg

CfgNode

Queue

FilterCfg

CfgNode

Filter

CfgNode

Queue
1

ExporterCfg

CfgNode

Exporter

(b) Configuration and data paths

Figure 1.1.: Vermont module configuration

The idea is to support updates of the configuration file and to reconfigure Vermont
accordingly at runtime. For this reconfiguration, Vermont computes the differences be-
tween the old and new configuration. Unique IDs are used to identify the modules.
Vermont always tries to reuse existing modules in order to allow keeping state infor-
mation and to speed up the reconfiguration process. If the configuration of an existing
module has been changed, Vermont tries to reuse it and applies updates on-the-fly. If it
is not possible to reuse a module, a new one is created. Examples are aggregator mod-
ules: for aggregation configurations, no on-the-fly reconfiguration is allowed because the
used hash tables need to be rebuilt. Thus, all stored flows need to be exported and sent
to the subsequent module in the module graph. This ensures as little flow data loss as
possible. This process is repeated for each module until instances for all new modules
are created. Modules are reconnected according to the new configuration and started in
reverse topological order as depicted by the numbers in Figure 1.1b.

If modules do not have any asynchronous tasks to perform, they may be executed
synchronously using a single thread. If, on the other hand, Vermont runs on a multicore
machine, the software can be configured to use multiple threads, at most one per module.
Asynchronous execution of modules causes lags in the processing time, so Vermont may
use queues between modules to compensate this problem. The queues can be fully
customized, but usually FIFO scheduling with a configurable size is used. The queues
block if the maximum size is reached.

Figure 1.1b shows a configuration consisting of three modules that are connected by
queues. Shown are the configuration paths (dashed lines) that link all the modules in
the module graph and the data paths (thick lines) that depict the data flow between the
modules.

The development of the reconfiguration process focused on minimizing the time dur-
ing which data processing is stopped. It is technically not feasible to provide completely
uninterrupted processing because the dependencies between the modules need to be con-
sidered. Especially, it is not possible to reconfigure the module graph without stopping
the modules that need to be re-ordered in the graph. We minimized the module’s outage
by preparing new modules before the processing is stopped. Additionally, the shutdown

3 3

0 200 400 600 800 1000 1200 1400

0
50

0
10

00
15

00

time (minutes)

nu
m

be
r

of
 e

nt
rie

s
(x

 1
00

0) all
multi−entry buckets

Figure 1.2.: Hash table size

of old modules is performed after the new configuration is completed and started.
We achieved downtimes smaller than 5 ms using this method. On a link transferring

1 GBit/s, this timeout could result in a data loss of about 650 KByte. Vermont is able
to buffer this data during the reconfiguration process using the memory-mapped PCAP
library.1 For our tests, this buffer was set to 64 MByte.

1.1.2. Situation Awareness

Dynamic adaptation to current traffic data rates and corresponding load on flow meters
does not only depend on seamless reconfiguration, but also on the ability to identify
and, in the best case, anticipate bottlenecks in the monitoring hierarchy [LD09]. We
implemented sensors inside Vermont to retrieve information about the current load of
the system. Each module offers standard measurement values like CPU utilization and
memory requirements. Additionally, module-specific data is monitored, e.g. the current
packet rate or the queue size. This information is an essential requirement for algorithms
that try to balance load among multiple flow aggregation nodes. Based on the data
coming from the sensors, it is possible to move a task to a different system that still has
unused capacities.

Figure 1.2 shows example statistics from the aggregator’s hash table that were col-
lected over one day: the black line shows the total number of entries inside the hash
table, the blue line shows the number of entries that shared a single bucket with other
entries inside the hash table. Multi-entry buckets considerably slow down the lookup of
entries in a hash table, as they are implemented as linked lists. In our example, the hash
table offered a total of 256 Kbuckets, but at the time of 800 min a DDoS attack occurred
on the monitored link and the number of entries exceeded the hash table’s capacity by
far. This is a typical case for a DoS attack against the flow meter and should be evaded
by monitoring the module load and adequate reconfiguration.

1http://public.lanl.gov/cpw/

http://public.lanl.gov/cpw/

4 4

1.2. Vermont Management

A common scenario in networks is the installation of monitoring systems at multiple
points inside the network infrastructure. Here multiple Vermont instances need to be
managed simultaneously. In this section, we will describe remote Vermont management
tools that are able to supervise and edit the configuration of multiple Vermont instances,
and to stop and to start them. Sensors inside Vermont can be read out and displayed
in time-line graphs.

Vermont

Manager Web - GUI

Controller

Vermont

Controller

Figure 1.3.: Topology of the Vermont management system

The Vermont Management infrastructure consists of two central components: The
web interface for controlling all available components and the manager which manages
registration of all Vermont instances and controls them. The web interface only commu-
nicates with the management component and executes all tasks through it. Communi-
cation with single Vermont instances is performed by controllers which execute requests
coming from the manager and relay them to each Vermont instance. Communication
between web interface, manager and controller is performed using network-based Remote
Procedure Call (RPC), so these components may be deployed on different hosts. The
only restriction is the controller: it must be executed on the same host as Vermont,
as communication between these components is performed by reading and writing files,
as well as sending process signals. All commands initiated on the webinterface are for-
warded to the manager which processes them directly, or forwards them to the addressed
controller.

The Vermont management system is able to change configuration parameters of run-
ning Vermont instances on-the-fly based on observed sensor values. We created a closed
loop that analyzes sensors values coming from specific Vermont instances and based on
this data, we changed configuration parameters of running Vermont instances. Figure 1.4
displays the process.

Vermont’s dynamic reconfiguration is realized using the so-called sensor actor concept.
Sensors monitor input values from Vermont and are parametrized with a condition. If
this condition is met, they will be triggered. Furthermore, the sensors are connec-

5 5

Vermont
instance

Vermont
instance

Vermont
instance

Sensor data values

Parametrization

Figure 1.4.: Closed loop for Vermont reconfiguration

tion with one or more actors which execute an action when triggered. It is possible
within Vermont to assign multiple actors to a sensor. All sensors and actors are directly
parametrized inside the Extendible Markup Language (XML)-based configuration of
the Vermont instance. Corresponding entries in these configuration files are ignored
by Vermont and are only interpreted by the controller and manager components of the
management infrastructure. Detailed description of the sensor-actor configuration can
be found in section 3.2.4

1.2.1. Controller

Each instance of a Controller manages a single Vermont instance. For remote control
over the network, a RPC interface is provided. The controller generates statistics from
sensor values and stores them locally. When a request is received via the RPC interface,
this data is accessed and transferred over the interface. The following functions are
served via the interface:

• Retrieval of current state of Vermont

• Start and stop of Vermont

• Trigger of reconfiguration of Vermont

• Retrieval and change of provided configuration file

• Retrieval and change of the dynamic configuration file

• Retrieval of current sensor data values

• Retrieval of graphs showing the history of single sensor values

6 6

A second ‘dynamic’ configuration file was introduced for dynamic reconfiguration. If
certain values are to be changed dynamically within the closed loop, only the dynamic
configuration will be changed. The original configuration will be kept so that a con-
figuration reset is always possible. The dynamic configuration file is always generated
automatically and is initially a copy of the original configuration. It is always used by
the running Vermont instance and uses the file name suffix .dynconf. The controller
component has a seperate configuration file. The detailed structure is described in sec-
tion 3.2.2.

1.2.2. Manager

Central management of multiple Vermont instances and their controllers is performed
within the manager. The following tasks are carried out inside this component:

• Provides a directory of all configured vermont instances

• Dynamic reconfiguration that consists of the following tasks:

– regular retrieval of all sensor values of the Vermont instances

– check of all configured sensors

– trigger of corresponding actors

– execution of reconfiguration and transfer of updated configuration

– trigger of configuration reload for concerned Vermont instances

• Provides an interface for the web interface

The manager usually only carries out regular management tasks and is the interface
between web interface and controllers. This component does not require much perfor-
mance and may be executed on the same host as the web interface.

1.2.3. Webinterface

The webinterface is available for easy configuration and control of used Vermont in-
stances. Technically, the web interface is realized as mod_python module2 for the web-
server apache. All offered functions are relayed to the manager component and processed
by it. In the following, we will describe the web interface and all pages within more thor-
oughly:

It is possible to view the status of all managed Vermont instances in an overview
page. Figure 1.5 shows a screenshot of this page. This is the central management page
and leads to all functions of the web interface. In detail, Vermont instances may be
controlled (starting, stopping, reloading configuration), configurations may be edited,
sensor data may be retrieved and displayed, and each Vermont instance’s log file may
be displayed. Dynamic configuration may also be switched on and off on this page.
By switching it off, Vermont only uses static configuration and does not perform any
dynamic reconfiguration tasks any more.

7 7

Figure 1.5.: Screenshot of overview page in the web interface

Figure 1.6.: Screenshot of page containing current sensor values

Current information can be retrieved by requesting generated statistics by the con-
troller component, or by retrieval of current sensor data. Current sensor data may be
displayed by selecting the link “Sensor Data”. Vermont produces a XML file containing
current sensor values. This XML file is processed and converted to a Hypertext Markup
Language (HTML) website with tables to give a good overview of the data, succeeded
by the original XML data coming from Vermont for detailed inspection. At the top
of the page, a graph is automatically generated showing the module graph that is cur-
rently used in Vermont (see also figure 1.6). To display the history of sensor values
over time, the link “Statistics” leads to a page which displays graphs of sensor values of
the corresponding Vermont instance. Figure 1.7 shows a screenshot of this page. These
graphs are not generated over all available sensor data, but only from selected data that
is specified in each controller component’s configuration.

When clicking on the “Configure” link in the overview page, the selected Vermont
instance’s configuration is displayed and may be changed. Note that only valid XML
data may be entered into this page, as this configuration is immediately parsed by the

2also see http://www.modpython.org/

http://www.modpython.org/

8 8

Figure 1.7.: Screenshot of page containing graphs of selected sensor values

manager component and is rejected if errors during the parsing process occur. This
page additionally displays the currently used dynamic configuration, so it contains all
parameter values changed by the sensor actor process.

2. Installation

This chapter describes the installation steps required for Vermont and its management
infrastructure. We assume, that source code of both systems is already available in files
vermont.tar.bz2 and vmanager.tar.bz2.

2.1. Vermont

• The following tools and libraries are needed for Vermont (in their development
version, i.e. including header files):

– gcc for C++

– cmake

– libpcap

– libpcre3

– postgresql (>= 8.3, optional)

– mysql (optional)

– libboost

– libxml2

– libpq (optional)

– libsctp (optional)

– libpcap-mmap (optional)

• Extract tarball with tar xjvf vermont.tar.bz2.

• Go into directory vermont and execute cmake . to check for unresolved dependen-
cies for compilation of Vermont.

• If Vermont needs to be compiled using the memory-mapped version of PCAP,
please download and compile the library in directory ../libpcap-mmap relative to
the root of its Vermont’s source code directory.

• Edit compilation parameters, most convenient way is by executing ccmake .

• Compile Vermont with make (on a multiple core system, make -jX triggers a par-
allel build with X parallel processes)

• Execute Vermont with example configuration and a little more information than
usual (parameter -d): ./vermont -f configs/example.xml -d

10 10

2.2. Vermont Management

• The following tools and libraries are needed for the Vermont management system:

– python (>= 2.5)

– apache2

– libapache-mod-python

– python-4suite-xml

– python-pydot

– graphviz

– rrdtool

– python-cheetah

– python-dns

• Extract tarball with tar xjvf vmanager.tar.bz2

• Execute target creation script in source code root directory: bash build_target.sh

• Components manager (target/manager), controller (target/controller) and
the webinterface (target/webinterface) are now ready-to-use in their described
directories

• Edit configuration files for each of the components and distribute the controller to
hosts

• Edit Apache configuration to include the Vermont webinterface in the web site. An
example configuration is located in target/webinterface/apache-config.sample

• Run controllers and manager

• Access webinterface via
http://<servername>/<directory to webinterface>/start.py

3. Structure and Configuration

3.1. Vermont

Vermont is heavily modularized. Every functionality is realized in corresponding mod-
ules, which have usually one input interface and one output interface. These two in-
terfaces expect certain element types to be transferred. Within Vermont, the following
element types are available:

• Packet: Represents a raw packet captured from the network interface or read from
a dump file. Its class Packet provides pointers to detected headers like Internet
Protocol (IP), Transmission Control Protocol (TCP), User Datagram Protocol
(UDP), etc. Usually these packets are not available in full length, but only the
first N bytes (defined in configuration of module Observer and Vermont’s global
compile-time configuration.

• IpfixRecord: Represents a flow record. For each produced or incoming flow record,
one element of this type is created. IPFIX templates are automatically extracted
and are referenced within each IpfixRecord instance.

• IdmefMessage: Represents an IDMEF message in XML form. These elements are
created by analyzer modules and contain a XML document describing the detected
event.

Modules can be linked to a chain, so that the output of the preceding module is used
as input for the successing module(s). Two modules may be only be connected, if they
use the same output and input element type. All modules may have one or more output
modules. In this case, all outgoing elements are not copied, but their references are
copied to other modules. So if modules modify certain parts of the elements, other
modules may be influenced by the modification. This aspect must be regarded when
setting up the configuration and module structure. Modules are not allowed to receive
input from multiple modules, as modules do not offer synchronization by default. For this
case, queues can be prepended to the receiving module which perform synchronization
tasks between all sending modules. If no queue is specified in front of a module that
receives data from multiple modules, a queue with length of 1 is automatically inserted.
To specify the connections between modules, each module ist identified by a unique ID
number. For modules with successors, the IDs of the successing modules are listed in
the module configuration as <next> tags.

Roughly, Vermont’s available modules may be seperated into the following groups:

• Packet Processing: All modules processing raw packets.

12 12

– Observer

– PacketFilter

– PacketQueue

– PacketAggregator

– PacketIDMEFReporter

– PSAMPExporter

• Flow Processing: All modules processing flow records.

– IpfixCollector

– IpfixQueue

– IpfixAggregator

– IpfixExporter

– IpfixPrinter

– IpfixDbReader

– IpfixDbWriter

– IpfixDbWriterPg

– RecordAnonymizer

• IDMEF Processing: All modules processing IDMEF messages.

– IDMEFExporter

• Flow Analyzer: All modules analyzing flow records to produce events or statistics.

– TRWPortscanDetector

– Autofocus

• Queues: Queues that can connect multiple modules. In contrast to normal mod-
ules, they accept input from multiple modules and perform synchronization.

– PacketQueue

– IpfixQueue

3.1.1. IDMEFExporter

Exports incoming IDMEF messages to the external perl script idmefsender.pl which
sends it over the network to a specified URL.

• Input type: IdmefMessage

• Output type: none

Example configuration:

13 13

1 <idmefExporter id="9">

2 <sendurl >http: // localhost </sendurl >

3 <destdir >idmef_work </destdir >

4 </idmefExporter >

Parameters:

Parameter Default Description
value

sendurl none Destination URL where IDMEF messages must sent to.
destdir idmef work Directory, where IDMEF messages are temporary stored.

There they are picked up by the external perl script id-
mefsender.pl in directory /tools.

3.1.2. IpfixAggregator

Aggregates incoming IPFIX flows according to specified parameters. Configuration is
similar to module PacketAggregator.

• Input type: IpfixRecord

• Output type: IpfixRecord

Example configuration:

1 <ipfixAggregator id="6">

2 <rule>

3 <templateId >998</templateId >

4 <biflowAggregation >1</biflowAggregation >

5 <flowKey >

6 <ieName >sourceIPv4Address </ieName >

7 </flowKey >

8 <flowKey >

9 <ieName >destinationIPv4Address </ieName >

10 </flowKey >

11 <flowKey >

12 <ieName >protocolIdentifier </ieName >

13 </flowKey >

14 <flowKey >

15 <ieName >sourceTransportPort </ieName >

16 </flowKey >

17 <flowKey >

18 <ieName >destinationTransportPort </ieName >

19 </flowKey >

20 <nonFlowKey >

21 <ieName >flowStartMilliSeconds </ieName >

22 </nonFlowKey >

23 <nonFlowKey >

24 <ieName >flowEndMilliSeconds </ieName >

25 </nonFlowKey >

26 <nonFlowKey >

27 <ieName >octetDeltaCount </ieName >

28 </nonFlowKey >

14 14

29 <nonFlowKey >

30 <ieName >packetDeltaCount </ieName >

31 </nonFlowKey >

32 <nonFlowKey >

33 <ieName >tcpControlBits </ieName >

34 </nonFlowKey >

35 <nonFlowKey >

36 <ieName >revflowStartMilliSeconds </ieName >

37 </nonFlowKey >

38 <nonFlowKey >

39 <ieName >revflowEndMilliSeconds </ieName >

40 </nonFlowKey >

41 <nonFlowKey >

42 <ieName >revoctetDeltaCount </ieName >

43 </nonFlowKey >

44 <nonFlowKey >

45 <ieName >revpacketDeltaCount </ieName >

46 </nonFlowKey >

47 <nonFlowKey >

48 <ieName >revtcpControlBits </ieName >

49 </nonFlowKey >

50 </rule>

51 <expiration >

52 <inactiveTimeout unit="sec">1</inactiveTimeout >

53 <activeTimeout unit="sec">1</activeTimeout >

54 </expiration >

55 <pollInterval unit="msec">1000</pollInterval >

56 <next>4</next>

57 </packetAggregator >

Parameters:

Parameter Default Description
value

rule none Specifies a rule according to which is aggregated. More
than one rule may be specified per aggregator.

biflowAggregation 0 Specifies if biflow aggregation is to be performed (0=no
biflow, 1=biflow). Only valid in IpfixAggregator.
To accomodate biflow information elements, Vermont-
specific enterprise type ids were specified: revFlow-
StartMilliSeconds, revFlowEndMilliSeconds, revFlow-
StartSeconds, revFlowEndSeconds, revOctetDeltaCount,
revPacketDeltaCount and revTcpControlBits.

templateId none Template ID (mandadory!).
flowKey Flow key information element - flows are aggregated ac-

cording to those keys.
nonFlowKey none Non-flow key information element - those IEs are aggre-

gated.
ieName none name of the IE.
modifier none Optional field modifier for flow key IEs (”discard”,

”mask/X”).

15 15

match 0 Optional flow key filter for protocol identifier (”TCP”,
”UDP”, ”ICMP”, or IANA number), IP addresses
(”A.B.C.D/M”), port numbers (separated by ”,”, port
range ”A:B”), TCP control bits (”FIN”, ”SYN”, ”RST”,
”PSH”, ”ACK”, ”URG”, separated by ”,”).

inactiveTimeout 0 Expiration timeout for idle/inactive flows.
activeTimeout 0 Periodic expiration timeout for long-lasting flows (typi-

cally larger than inactiveTimeout).
pollInterval 0 Length of interval when flows should be exported to next

module.
hashtableBits 17 Length of hashtable used for aggregation in bits. The

resulting hashtable will have a size of 2hashtableBits.

3.1.3. IpfixCollector

Receives IPFIX records from the network and imports them into Vermont. Protocols
UDP and SCTP are supported at the moment.

• Input type: IdmefMessage

• Output type: none

Example configuration:

1 <ipfixCollector >

2 <listener >

3 <ipAddress >0.0.0.0 </ipAddress >

4 <transportProtocol >UDP</transportProtocol >

5 <port>4739</port>

6 </listener >

7 </ipfixCollector >

Parameters:

Parameter Default Description
value

listener none Specifies a port where to listen for IPFIX flows.
ipAddress none IP address of interface on which collector receives IPFIX

packets. If not given, collector receives at all interfaces.
transportProtocol none Must be set to ‘UDP’ or ‘SCTP’.
port 4739 Port where Vermont listenes for incoming IPFIX flows.

3.1.4. IpfixExporter

Exports internal IPFIX records to the network using protocol UDP or SCTP.

• Input type: IpfixRecord

• Output type: none

Example configuration:

16 16

1 <ipfixExporter id="7">

2 <templateRefreshInterval >10</templateRefreshInterval >

3 <maxRecordRate >5000</maxRecordRate >

4 <sctpDataLifetime unit="msec">10000 </sctpDataLifetime >

5 <sctpReconnectInterval unit="sec">30</sctpReconnectInterval >

6 <collector >

7 <ipAddressType >4</ipAddressType >

8 <ipAddress >127.0.0.1 </ipAddress >

9 <transportProtocol >17</transportProtocol >

10 <port>1500</port>

11 </collector >

12 </ipfixExporter >

Parameters:

Parameter Default Description
value

observationDomainId 0 Observation Domain ID of the exporter.
templateRefreshInteval 20 s Interval for periodic sending of templates.
templateRefreshRate 10000 Interval for periodic sending of templates in records.
ipAddressType 4 Currently, only IPv4 is supported.
ipAddress none IP address of the collector the packets are sent to.
transportProtocol none Currently, only UDP (17) is supported.
port 4739 Port number of the collector.
maxRecordRate 5000 Maximum number of flow records per second sent to col-

lector.
sctpDataLifetime 10 000 ms Time how long SCTP considers a packet valid and tries

to retransmit it.
sctpReconnectInterval 30 s Time that Exporter waits to reestablish a lost connection.

3.1.5. IpfixPrinter

Prints incoming Ipfix flows to stdout for debugging purposes.

• Input type: IpfixRecord

• Output type: none

Example configuration:

1 <ipfixPrinter id="8">

2 <lineOutput >1</lineOutput >

3 </ipfixPrinter >

Parameters:

Parameter Default Description
value

lineOutput 0 Specifies if a special one-line-per-flow output should be
used if value equals 1.

17 17

3.1.6. IpfixDbReader

Imports IPFIX flows from a MYSQL database table.

• Input type: none

• Output type: IpfixRecord

Example configuration:

1 <ipfixDbReader id="10">

2 <host>127.0.0.1 </host>

3 <port>3306</port>

4 <dbname >flows </dbname >

5 <username >vermont </username >

6 <password >v_password </password >

7 <timeshift >true</timeshift >

8 <next>12</next>

9 </ipfixDbReader >

Parameters:

Parameter Default Description
value

host none Host of MySQL database.
port 3306 Port number of database.
dbname none Database name.
username none Username for database access.
password none Password for database access.
timeshift false Shift time stamps to current time.
fullspeed false If true, tables are read at full speed. Timeshifts are dis-

abled. Otherwise, records are read from table approx-
imately at the same speed as they were originally ex-
ported.

observationDomainId 0 Observation Domain Id assigned to the records.

3.1.7. IpfixDbWriter

Exports IPFIX flows to a database table in a MySQL database.

• Input type: IpfixRecord

• Output type: none

Example configuration:

1 <ipfixDbWriter id="10">

2 <host>127.0.0.1 </host>

3 <port>3306</port>

4 <dbname >flows </dbname >

5 <username >vermont </username >

18 18

6 <password >v_password </password >

7 <bufferrecords >30</bufferrecords >

8 <columns >

9 <name>firstSwitched </name>

10 <name>bytes</name>

11 </columns >

12 </ipfixDbWriter >

Parameters:

Parameter Default Description
value

host none Host of MySQL database.
port 3306 Port number of database.
dbname none Database name.
username none Username for database access.
password none Password for database access.
bufferrecords 30 Amount of flow records to buffer until they are written

to the database.
observationDomainId none Observation Domain Id overriding the value to the

records.
name none Column name (see IpfixDbCommon.hpp, currently

one of ”srcIP”, ”dstIP”, ”srcPort”, ”dstPort”,
”proto”, ”dstTos”, ”bytes”, ”pkts”, ”firstSwitched”,
”lastSwitched”, ”firstSwitchedMillis”, ”lastSwitched-
Millis”, ”exporterID”, ”tcpControlBits”, ”revbytes”,
”revpkts”, ”revFirstSwitched”, ”revLastSwitched”,
”revFirstSwitchedMillis”, ”revLastSwitchedMillis”,
”revTcpControlBits”, ”maxPacketGap”)

3.1.8. IpfixDbWriterPg

Exports IPFIX flows to a database table in a PostgreSQL database.

• Input type: IpfixRecord

• Output type: none

Example configuration:

1 <ipfixDbWriter id="10">

2 <host>127.0.0.1 </host>

3 <port>3306</port>

4 <dbname >flows </dbname >

5 <username >vermont </username >

6 <password >v_password </password >

7 <bufferrecords >30</bufferrecords >

8 </ipfixDbWriter >

Parameters:

Parameter Default Description

19 19

value

host none Host of MySQL database.
port 3306 Port number of database.
dbname none Database name.
username none Username for database access.
password none Password for database access.
bufferrecords 30 Amount of flow records to buffer until they are written

to the database. To achieve high performance, a value
from 1000 to 10000 is recommended.

3.1.9. IpfixPayloadWriter

Writes IPFIX records including front payload into files. Only the first N (to be set in
parameters) flows in chronological order are regarded. It is expected, that incoming
flows are biflows and include front payload. For each biflow, three files are generated:
.info contains header information of the flow, two .payload files contain front payload in
both directions.

• Input type: IpfixRecord

• Output type: none

Example configuration:

1 <ipfixPayloadWriter id="5">

2 <destPath >payload_work </destPath >

3 <filenamePrefix >vfp</filenamePrefix >

4 <connNumber >10</connNumber >

5 <ignoreEmptyPayload >1</ignoreEmptyPayload >

6 </ipfixPayloadWriter >

Parameters:

Parameter Default Description
value

destPath none Relative path where output files are stored.
filenamePrefix none Prefix for generated filenames.
connNumber none Amount of connections that are recorded. If this pa-

rameter is set to 0, no sorting will be performed and all
incoming flows will be directly written to filesystem.

ignoreEmptyPayload false Set to true if all connections/biflows with empty payload
shoud be ignored.

ignoreIncompleteTCP false Set to true if all TCP biflows without SYN flags in both
directions should be ignored.

password none Password for database access.
bufferrecords 30 Amount of flow records to buffer until they are written

to the database.

20 20

3.1.10. IpfixQueue

Caches IPFIX records in a queue until next module is ready to process them.

• Input type: IpfixRecord

• Output type: IpfixRecord

Example configuration:

1 <ipfixQueue id="3">

2 <maxSize >10</maxSize >

3 <next>6</next>

4 </ipfixQueue >

Parameters:

Parameter Default Description
value

maxSize 1 Maximum number of items in queue. If queue is full,
no new packets are accepted and preceding modules are
paused.

3.1.11. Observer

Captures raw packets using the PCAP interface.

• Input type: none

• Output type: Packet

Example configuration:

1 <observer id="1">

2 <interface >eth1</interface >

3 <pcap_filter >ip</pcap_filter >

4 <next>2</next>

5 </observer >

Parameters:

Parameter Default Description
value

interface none Interface PCAP listens to. Do not use in combination
with parameter filename.

captureLength 128 Sets the capture length of each packet. Packets bigger
than that size are truncated. ATTENTION: if payload
is analyzed in later modules, this parameter needs to be
large enough!

filename none Must be specified if Vermont needs to read from file and
contains its filename. Do not use in combination with
parameter interface.

21 21

pcap filter none Filter specification which is passed to PCAP (usually ‘ip’
to only capture IP packets).

replaceTimestamps false If true, PCAP packet timestamps are replaced with cur-
rent time. This parameter only applies to PCAP file
reading.

offlineSpeed 1.0 Only applies to PCAP file reading. Sets the speed mul-
tiplier for offline PCAP file reading. A negative value
means read as fast as you can.

offlineAutoExit true Only applies to PCAP file reading. Sets if Vermont
should be shut down automatically after reading all
PCAP file data.

3.1.12. PacketFilter

Forwards packets which match specified filter configuration and drops non-matching
packets.

• Input type: Packet

• Output type: Packet

Example configuration:

1 <filter id="2">

2 <countBased >

3 <interval >4</interval >

4 <spacing >2</spacing >

5 <countBased >

6 <timeBased >

7 <interval >100</interval >

8 <spacing >50</spacing >

9 </timeBased >

10 <stringBased >

11 <is>bla</is>

12 <isnot>blub</isnot >

13 <is type="HEX">0xFF024F </is>

14 </stringBased >

15 <regexBased >

16 <matchPattern >is\s*not</matchPattern >

17 </regexBased >

18 <next>3</next>

19 </filter >

Parameters:

Parameter Default Description
value

countBased none Creates a count-based filter. Spacing defines the num-
ber of packets accepted at the beginning of the period,
interval specifies the length of the period

timeBased none Creates a time-based filter. Spacing defines the num-
ber of milliseconds during which time all incoming pack-
ets are accepted at the beginning of the period, interval
specifies the length of the period in milliseconds.

22 22

interval none Belongs to either countBased or timeBased filter. Speci-
fies length of period.

spacing none Belongs to either countBased or timeBased filter. Speci-
fies amount of time or number of packets accepted.

stringBased none Creates a string-based filter which scans for specified
strings inside the packet payload. If more than one search
element is specified, only packets will be forwarded which
match *all* specifications.

is none Accepts packets which contain included ASCII string.
If attribute ”type” is set to ”HEX”, the tag’s content
MUST include a hexstring which specifies the binary data
to be searched for.

isnot none Drops packets which contain included ASCII string. If
attribute ”type” is set to ”HEX”, the tag’s content
MUST include a hexstring which specifies the binary data
to be searched for.

regexBased none Creates a regex-based filter which scans for specified
regexes inside the packet payload. If more than one regex
is specified, only packets will be forwarded which match
all specifications.

matchPattern none Specifies a regular expression used by the regex-based
filter.

stateConnectionBased none Creates a filter which searches for TCP connections and
matches all packets that contain the first N payload
bytes. It uses a determinstic algorithm that will con-
sume all the memory necessary to store all seen TCP
connections.

connectionBased none Same as stateConnectionBased filter, but uses a different
algorithm for TCP connection tracking. The algorithm
is probabilistic and uses a fixed amount of memory to
store the TCP connections.

timeout 3 Belongs to either stateConnectionBased or connection-
Based filter. Specifies the time in seconds a seen TCP
connection request is valid, before it will time out.

bytes 100 Belongs to either stateConnectionBased or connection-
Based filter. Specifies how much Payload should be ex-
ported in bytes.

hashFunctions 3 Belongs to connectionBased filter. Specifies the number
of hash functions that are used to index the bloom filters.

filterSize 1000 Belongs to connectionBased filter. Specifies the size of
the bloom filters that are used by the connection based
filter.

exportControlPackets true Controls wether TCP control packets (SYN/FIN/RST)
are exported by stateConnectionBased and connection-
Based filter.

anonFilter none Specifies a filter that performs anonymization on cap-
tured network packets. Contains one or more anonFields.
This tag can have several subtags. The subtags are the
same ones that can be used in the RecordAnonymizer
module

payloadFilter none Payload is dropped, when this filter is specified.

23 23

3.1.13. PacketQueue

Caches packets in a queue until next module is ready to process them.

• Input type: Packet

• Output type: Packet

Example configuration:

1 <packetQueue id="3">

2 <maxSize >10</maxSize >

3 <next>6</next>

4 </packetQueue >

Parameters:

Parameter Default Description
value

maxSize 0 Maximum number of items in queue. If queue is full,
no new packets are accepted and preceding modules are
paused.

3.1.14. PacketAggregator

Aggregates incoming raw packets to flows according to specified parameters.

• Input type: Packet

• Output type: IpfixRecord

Example configuration:

1 <packetAggregator id="6">

2 <rule>

3 <templateId >998</templateId >

4 <flowKey >

5 <ieName >sourceIPv4Address </ieName >

6 </flowKey >

7 <flowKey >

8 <ieName >destinationIPv4Address </ieName >

9 </flowKey >

10 <flowKey >

11 <ieName >protocolIdentifier </ieName >

12 </flowKey >

13 <flowKey >

14 <ieName >sourceTransportPort </ieName >

15 </flowKey >

16 <flowKey >

17 <ieName >destinationTransportPort </ieName >

18 </flowKey >

19 <nonFlowKey >

20 <ieName >flowStartMilliSeconds </ieName >

24 24

21 </nonFlowKey >

22 <nonFlowKey >

23 <ieName >flowEndMilliSeconds </ieName >

24 </nonFlowKey >

25 <nonFlowKey >

26 <ieName >octetDeltaCount </ieName >

27 </nonFlowKey >

28 <nonFlowKey >

29 <ieName >packetDeltaCount </ieName >

30 </nonFlowKey >

31 <nonFlowKey >

32 <ieName >tcpControlBits </ieName >

33 </nonFlowKey >

34 </rule>

35 <expiration >

36 <inactiveTimeout unit="sec">1</inactiveTimeout >

37 <activeTimeout unit="sec">1</activeTimeout >

38 </expiration >

39 <pollInterval unit="msec">1000</pollInterval >

40 <next>4</next>

41 </packetAggregator >

Parameters:

Parameter Default Description
value

templateId none Template ID (mandadory!).
flowKey Flow key information element - flows are aggregated ac-

cording to those keys.
nonFlowKey none Non-flow key information element - those IEs are aggre-

gated.
ieName none name of the IE.
modifier none Optional field modifier for flow key IEs (”discard”,

”mask/X”).
match 0 Optional flow key filter for protocol identifier (”TCP”,

”UDP”, ”ICMP”, or IANA number), IP addresses
(”A.B.C.D/M”), port numbers (separated by ”,”, port
range ”A:B”), TCP control bits (”FIN”, ”SYN”, ”RST”,
”PSH”, ”ACK”, ”URG”, separated by ”,”).

inactiveTimeout 0 Expiration timeout for idle/inactive flows.
activeTimeout 0 Periodic expiration timeout for long-lasting flows (typi-

cally larger than inactiveTimeout).
pollInterval 0 Length of interval when flows should be exported to next

module.
hashtableBits 17 Length of hashtable used for aggregation in bits. The

resulting hashtable will have a size of 2hashtableBits.

3.1.15. PacketIDMEFReporter

For each incoming packet an IDMEF message is generated. An extract of the packet
payload called snapshot may be included in the IDMEF message.

25 25

• Input type: Packet

• Output type: IdmefMessage

Example configuration:

1 <packetIDMEFReporter >

2 <snapshotoffset >12</snapshotoffset >

3 <snapshotlength >20</snapshotlength >

4 <analyzerid >idmefreporter </analyzerid >

5 <idmeftemplate >idmef/templates/idmefreporter_template.xml ↘
→</idmeftemplate >

6 </packetIDMEFReporter >

Parameters:

Parameter Default Description
value

snapshotoffset 0 Byte offset from start of packet payload.
snapshotlength 0 Byte length of snapshot. If it exceeds packet length,

snapshot will be truncated.
analyzerid none Analyzer ID that will be included in IDMEF message.
idmeftemplate none Path to template file for IDMEF message.

3.1.16. PCAPExporter

Exports incoming packets into a file in PCAP format.

• Input type: Packet

• Output type: none

Example configuration:

1 <pcapExporter >

2 <filename >output.pcap</filename >

3 </psampExporter >

Parameters:

Parameter Default Description
value

filename none Name of the output pcap file.
linkType EN10MB Data link type of the output file. Names are DLT names

form the pcap man page with the DLT removed (see
‘man pcap’)

snaplen PCAP MAX Snaplen for the pcap file
CAPTURE LENGTH

26 26

3.1.17. PSAMPExporter

Exports incoming packets as PSAMP records over the network.

• Input type: Packet

• Output type: none

Example configuration:

1 <psampExporter id="1">

2 <observationDomainId >123</observationDomainId >

3 <ipfixPacketRestrictions >

4 <maxPacketSize >200</maxPacketSize >

5 <maxExportDelay unit="msec">500</maxExportDelay >

6 </ipfixPacketRestrictions >

7 <packetReporting >

8 <templateId >888</templateId >

9 <reportedIE >

10 <ieName >sourceIPv4Address </ieName >

11 </reportedIE >

12 <reportedIE >

13 <ieName >destinationIPv4Address </ieName >

14 </reportedIE >

15 <reportedIE >

16 <ieName >ipPayloadPacketSection </ieName >

17 <ieLength >65535 </ieLength >

18 </reportedIE >

19 </packetReporting >

20 <collector >

21 <ipAddress >127.0.0.1 </ipAddress >

22 <transportProtocol >UDP</transportProtocol >

23 <port>4739</port>

24 </collector >

25 </psampExporter >

Parameters:

Parameter Default Description
value

observationDomainId 0 Observation Domain ID of the exporter.
ipfixPacketRestrictions none Restrictions for IPFIX packets.
maxPacketSize none Maximum size of IPFIX packets.
maxExportDelay none Maximum delay until IPFIX packet is sent to destination.
packetReporting none Specifies elements to be exported for one template.
templateId 0 Specifies template ID.
reportedIE none Specifies one information element to be reported.
ieName none IPFIX type id of element to be exported.
ieLength none Optional specification of element length (usually only

used by ”ipPayloadPacketSection”.
collector none Contains specification of one destination for PSAMP

records.
idAddress none IP address of destination.
transportProtocol none Transport protocol to be used. Currently only ”UDP” is

supported.

27 27

port 4739 Port of destination.
templateRefreshRate 5000 Number of records, until template is resent.
templateRefreshInterval 30 s Time, until template is resent.

3.1.18. RecordAnonymizer

This module is capable of anonymizing arbitary fields within IPFIX-Records using dif-
ferent anonymization methods.

• Input type: IpfixRecord

• Output type: IpfixRecord

Example configuration:

1 <anonRecord id="3">

2 <anonField >

3 <anonIE >

4 <ieName >sourceIPv4Address </ieName >

5 </anonIE >

6 <anonMethod >CryptoPan </anonMethod >

7 <anonParam >insert key here</anonParam >

8 </anonField >

9 <anonField >

10 <anonIE >

11 <ieName >destinationIPv4Address </ieName >

12 <ieLength >4</ieLength >

13 </anonIE >

14 <anonMethod >CryptoPan </anonMethod >

15 <anonParam >insert key here</anonParam >

16 </anonField >

17 <copyMode >false </copyMode >

18 <next>6</next>

19 </anonRecord >

Parameters:

Parameter Default Description
value

anonField none Specifies one field and an anonymization method for that
field. Contains one anonIE, one anonMethod and an op-
tional anonParam tag.

anonIE none Specifies the information element that needs to be
anonymized. Belongs to anonField.

ieName none Specifies the name of the field that needs to be
anonymized. Belongs to anonIE.

anonMethod none Specifies the anonymization method that is used to
anonymize a given header field. Belongs to anonField.
Possible values are: BytewiseHashHmacSha1, Bytewise-
HashSha1, ConstOverwrite, ContinuousChar, HashH-
macSha1, HashSha1, Randomize, Shuffle, Whitenoise,
CryptoPan

28 28

anonParam none Specifies an optional parameter to the anonymization
method. Different methods need different params. Byte-
WiseHashHmacSha1, HashHmacSha1 need an variable
sized key. ConstOverwrite needs one character as pa-
rameter. CryptoPan needs an 32 bytes long parameter
(16 bytes key, 16 bytes pad). For CryptoPan and Con-
stOverwrite, keys can be specified as normal text, or as
hexadecimal string starting with ’0x’.

copyMode false If true, the Record Anonymizer creates a copy of the in-
coming record and leaves the original record unchanged.
Copy mode should be turned on if the original records
are processed by other moduls as well.

3.1.19. SensorManager

Module which controls all sensors (”‘Messfühler”’) inside Vermont. It does not have any
in- or output types and must not be connected to any other module. It is recommended to
set its ID to 99 to express its special role. If this module is specified in the configuration,
available sensors are activated and polled regularly. It may only be specified once.

• Input type: none

• Output type: none

Example configuration:

1 <sensorManager id="99">

2 <checkinterval >2</checkinterval >

3 <outputfile >sensor_output.xml</outputfile >

4 </sensorManager >

Parameters:

Parameter Default Description
value

checkinterval 2 Interval in seconds, when all sensors are polled and the
output file is written to.

outputfile sensor_output.xml Path to file, where sensor data is stored.
append 0 Set to 1 if output file should be appended to, and not

overwritten.

3.1.20. TRWPortscanDetector

Detects horizontal portscans in incoming IPFIX flows. Attention: IPFIX flows must be
aggregated to biflows. To achieve best results, flows should contain the following IEs:

• sourceIPv4Address

• destinationIPv4Address

• sourceTransportPort

29 29

• destinationTransportPort

• protocolIdentifier

• flowStartMilliSeconds

• flowEndMilliSeconds

• revFlowStartMilliSeconds

• revFlowEndMilliSeconds

• octetDeltaCount

• revOctetDeltaCount

• packetDeltaCount

• revPacketDeltaCount

• tcpControlBits

• revTcpControlBits

• Input type: IpfixRecord

• Output type: IdmefMessage

Example configuration:

1 <trwPortscanDetector id="8">

2 <analyzerid >trwportscandetector </analyzerid >

3 <idmeftemplate >idmef/templates/trwportscan_template.xml ↘
→</idmeftemplate >

4 <hashbits >20</hashbits >

5 <timeexpirepending >86400 </timeexpirepending >

6 <timeexpirescanner >1800</timeexpirescanner >

7 <timeexpirebenign >1800</timeexpirebenign >

8 <timecleanupinterval >10</timecleanupinterval >

9 <next>9</next>

10 </trwPortscanDetector >

Parameters:

Parameter Default Description
value

analyzerid none Analyzer ID which is inserted into the generated IDMEF
message.

idmeftemplate none Path to IDMEF template which is used to generate the
IDMEF message.

hashbits 20 Amount of bits used for hashtable to contain watched IP
addresses.

timeexpirepending 86400 Seconds, until non-classified inactive IP addresses are
purged from table.

30 30

timeexpirescanner 1800 Seconds, until as portscanner classified IP addresses are
purged from table.

timeexpirebenign 1800 Seconds, until as benign classified IP addresses are
purged from table.

timecleanupinterval 10 Interval length in seconds, when IP address table is
scanned for entries to be purged.

3.2. Vermont Management

This section covers all configuration files used and interpreted by the Vermont manage-
ment infrastructure.

3.2.1. Manager

The Vermont manager component is configured by a single XML file specified as com-
mand parameter at startup.

Listing 3.1: Sample configuration for manager
1 [Global]

2 Interval =5

3 Logfile=manager.log

4 AllowedWebIP =127.0.0.1

5 BindAddress =127.0.0.1

6 ListenPort =8001

7

8 [VermontInstances]

9 host_1=http:// vermont.monitor.de:8000

10 host_2=http:// vermont2.monitor.de:8000

You find an example configuration in listing 3.1. It contains the following parameters:

• Interval: Specifies the interval of retrieving sensor values of the Vermont instances
in seconds. After the data retrieval, reconfiguration sensors are checked and, if
needed, actors are triggered.

• Logfile: Specifies the file, where the manager log is to be written to.

• AllowedWebIP: Specifies the IP address, which may access the RPC interface.
Only one IP address may be specified, as only the web interface needs to access
this interface.

• BindAddress: Specifies the IP address of the networking interface, where manager
should listen for RPC connections. Specify nothing, if manager should listen on all
available interfaces. Be very careful, if all interfaces are used by the RPC interface,
as manager does not perform access control or authentication!

• ListenPort: Specifies the port where manager should listen on. Usually port 8001
is used for manager.

31 31

• host_X: Configures all Vermont instance’s controller using an Uniform Resource
Locator (URL), where the controllers’ interfaces are available. X needs to be in-
cremented starting at 1.

3.2.2. Controller

Like the manager, the controller is configured by a single XML file specified as command
parameter when executing it.

Listing 3.2: Example configuration for controller
1 [Global]

2 VermontDir =../ vermont

3 ConfigFile=vermont.conf

4 ControllerLogFile=vcontroller.log

5 VermontLogFile=tmp.log

6 AllowedManagerIp =1.2.3.4

7 BindAddress =127.0.0.1

8 ListenPort =8000

9

10 [Stats]

11 Interval =5

12 Name_1=CPU Utilization

13 XPath_1=sum(/ vermont/sensorData/processor[@id="0"]/util)

14 Name_2=Received packets on PCAP

15 XPath_2=sum(/ vermont/sensorData/sensor[@name="observer"] ↘
→/addInfo/pcap/received[@type="packets"])

16 Name_3=Dropped packets on PCAP

An example for the configuration file is displayed in listing 3.2. The following param-
eters may be specified:

• Sektion Global

– VermontDir: Directory, in which the Vermont instance that needs to be man-
aged is located (either absolute or relative to the current working directory).

– ConfigFile: File name relative to path VermontDir, in which Vermont’s
configuration is saved.

– ControllerLogFile: File name relative to the controller’s working directory,
in which the controller’s log is saved.

– VermontLogFile: File name relative to path VermontDir, in which all log
data of the started Vermont instance is saved.

– AllowedManagerIp: Specifies the IP address which may access the RPC in-
terface. Only one IP address may be specified, as only the manager needs to
access this interface. Ensure, that only one manager component accesses a
controller, as two simultaneous dynamic configuration processes would influ-
ence each other unpredictably.

32 32

1 [Global]

2 VManager=http: // localhost:8001

Figure 3.1.: Example configuration for web interface

– BindAddress: Specifies the IP address of the networking interface, where
controller should listen for RPC connections. Specify nothing, if controller
should listen on all available interfaces. Be very careful, if all interfaces are
used by the RPC interface, as controller does not perform access control or
authentication!

– ListenPort: Specifies the port where the controller should listen on. Usually
port 8000 is used for the controller.

• Sektion Stats: Specifies sensor data in an enumerated list starting at 1. For these
sensor data items, statistical data is saved to construct a time-line graph in the
web interface. All specified terms “X” must be replaced by a number.

– Name_X: Name of sensor data item

– XPath_X: XPath String1, which specifies the sensor data item within the XML
file filled by Vermont with sensor data.

– Interval: Interval in seconds, that specifies how often sensor data is retrieved
for saving the statistics.

3.2.3. Webinterface

The Vermont webinterface is also configured by a single XML configuration file. It must
be named vermont_web.conf and be located in the same directory as the script file for
the web interface start.py. It only consists of a single parameter, as seen in listing 3.1:

• VManager: Specifies the URL, where the manager component’s RPC interface can
be found. Usually port 8001 is used for this interface.

3.2.4. Sensor-Actor System

The complete reconfiguration process is performed in component manager. In regular
intervals (default: 5 seconds sensor data from all registered Vermont instances is re-
trieved, analyzed by sensors and eventually specified actors are triggered which modify
configuration parameters of Vermont instances. Configuration of both sensors and actors
is specified in each Vermont instance’s configuration file and interpreted by the central
manager component. Vermont ignores all parameters belonging to sensors and actors.
In the following, we will describe possible configuration options for the reconfiguration
framework.

1also seehttp://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

33 33

Sensors

Sensors read sensor data from a signle Vermont instance and acts on it. Source for
sensor data is the XML file produced by Vermont’s module called SensorManager. This
XML file is generated regularly by Vermont, read by the controller and forwarded to the
manager.

Listing 3.3: Example configuration for a sensor
1 <sensor id="1">

2 <source >sum(/ vermont/sensorData/processor/util)</source >

3 <threshold >50</threshold >

4 <activation >positive </activation >

5 </sensor >

Listing 3.3 show an example for a sensor’s configuration. The follwoing parameters
may be specified for each sensor:

• Attribute id: Each sensor is given an unique identification number. Attention:
Dynamic reconfiguration acts globally on all Vermont instances. So this ID needs
to be unique within the configurations of all Vermont instances.

• Element source: XPath-String2, which specifies the data elements inside
the XML document containing the sensor data coming from Vermont (File
|sensor output.xml—). This data is used as source for the corresponding sensor.
A floating-point number is expected from Vermont manager as a result.

• Element threshold: Defines a limit, when all assigned actors are to be notified.

• Element activation: This value defines, if the sensor is activated when the the
current value is above (“positive”) or below (“negative”) the limit, or never
(“disabled”).

In the displayed example, the sum of the utilization of all the system’s processors is
used as source. If this value is greater than 50, all connected actors are triggered.

During each check of the sensor values, the sensors trigger their assigned actors if the
trigger conditions are satisfied. During a regular reconfiguration interval of 5 seconds,
it is possible that actors are triggered in the same interval of 5 seconds.

Actors

Actors define actions that are executed after being triggered by a sensor. At the moment,
the following actions are available:

2XPath is a string which defines a single or multiple elements within a XML document. It is similar to
a path definition in a file system. In XPath, there are some additional functions specified to convert
or aggregate multiple values inside the XML document. The XPath string specified in the example
would select all sensor data values that are located in path |/vermont/sensorData/processor/util—.
If multiple elements are found, their contents are summed up by the function |sum—. Look at
http://www.w3.org/TR/xpath for a detailed description.

http://www.w3.org/TR/xpath

34 34

• change of parameters in configuration

• deactivation of Vermont modules

• reactivation of Vermont modules

1

Listing 3.4: Example configuration for an actor
1 <actor id="1">

2 <action >modifyvalue </action >

3 <code>v = int(v)*2</code>

4 <trigger >always </trigger >

5 <target >/ipfixConfig/filter[@id =2]/ countBased/interval </target >

6 </actor >

Actors are configured in the same way as sensors directly in the XML configuration of
Vermont. Listing 3.4 shows a configuration example. Each actor accepts the following
parameters:

• Attribute id: This ID connects an actor with a sensor. If an actor uses the same
ID as a sensor, the actor will be triggered by the sensor. It is possible to connect
multiple actors by using the same ID.

• Element action: Defines an action that is executed after the actor was triggered
by a sensor. The follwing actions are implemented:

– modifyvalue: Changes a parameter in the Vermont configuration, specified
in element target. How the value is changed is documented in element code.

– pausemodule: Pauses the module specified in element target by removing all
connections to preceding modules. Then the module is still activated inside
Vermont, but does not receive any input data any more. If it is reactivated
again, the module’s state will be kept this way.

– resumemodule: Reactivates the module specified in element target. All
connections that were removed by action pausemodule are reinserted into the
configuration, so that the module starts receiving input data again.

• Element code: This element parametrizes the method how to change the param-
eter value for action modifyvalue. This element expects Python code as input.
Variable v contains the configuration parameter’s current value. This value can
be modified arbitrarily. The value of variable v will after execution of the code
applied to Vermont’s configuration.

• Element trigger: Specifies, how often the actor reacts on trigger events from
sensors. The following values can be used:

– always: When the actor is triggered by the assigned sensor, the configuration
action is executed immediately.

35 35

– delayed: If the actor is triggered over an interval of delay, the action will
be executed once.

– once: The actor’s action will be executed, when the assigned sensor did not
trigger in the preceding interval, but triggered in the current one.

– once delayed: Is a combination of delayed and once: The actor will be
executed when the assigned sensor was active and triggered the actor over
an interval of delay. After executing the action, the actor is not activated
any more, except the sensor was inactive for a duration of delay. From
this moment on, the actor is activated again and may execute its action like
previously described.

• Element delay: Defines a time interval in seconds that is used by the actions
delayed and once delayed.

• Element target: When using the action modifyvalue, this element specifies
a parameter inside Vermont’s XML configuration file using XPath. The Path
/ipfixConfig/filter[@id=2]/countBased/interval3 specifies in this example,
that the interval of a sampler is target for modification. When using the actions
pausemodule and resumemodule, this element points to a configuration element
specifying a Vermont module, as e.g. the XML element <observer>.

The displayed example configuration for an actor changes the parameter value of a
filter module each time a sensor triggers it. The configured interval will be doubled each
time.

If actors change Vermont’s configuration, the configuration will be automatically trans-
mitted to the running Vermont instance by updated the configuration file and a recon-
figuration of Vermont is triggered by sending a process signal. These tasks are executed
by the controller component.

3In this XPath string, filter[@id=2] specifies the XML element filter containing the value 2 in
attribute id.

A. Appendix

A.1. Example configuration of a closed loop within a Vermont
instance

In this section, we present a complete example configuration for Vermont including
multiple sensors and actors. Two sensors use the processor utilization as input source:
The sensor with ID 1 is activated, when the processor utilization increases above 50%
and sensor with ID 2 is activated, if the processor utilization falls below 30%. The
first two actors change the filter’s parameters and duplicate / half the sampling rate
each time they are triggered. The succeeding actors pause and reactivate the module
ipfixAggregator.

1 <ipfixConfig >

2 <sensors >

3 <sensor id="1">

4 <source >sum(/ vermont/sensorData/processor/util)</source >

5 <threshold >50</threshold >

6 <activation >positive </activation >

7 </sensor >

8 <sensor id="2">

9 <source >sum(/ vermont/sensorData/processor/util)</source >

10 <threshold >30</threshold >

11 <activation >negative </activation >

12 </sensor >

13 </sensors >

14 <actors >

15 <actor id="1">

16 <action >modifyvalue </action >

17 <code>v = int(v)*2</code>

18 <trigger >always </trigger >

19 <target >/ipfixConfig/filter[@id =2] ↘
→/countBased/interval </target >

20 </actor >

21 <actor id="2">

22 <action >modifyvalue </action >

23 <code>if int(v) >2: v = int(v)/2</code>

24 <trigger >always </trigger >

25 <target >/ipfixConfig/filter[@id =2] ↘
→/countBased/interval </target >

26 </actor >

27 <actor id="1">

28 <action >pausemodule </action >

29 <trigger >once</trigger >

30 <target >/ipfixConfig/ipfixAggregator[@id =7]</target >

37 37

31 </actor>

32 <actor id="2">

33 <action >resumemodule </action >

34 <trigger >once</trigger >

35 <target >/ipfixConfig/ipfixAggregator[@id =7]</target >

36 </actor>

37 </actors >

38

39 <sensorManager id="99">

40 <checkinterval >1</checkinterval >

41 </sensorManager >

42

43 <observer id="1">

44 <interface >eth1</interface >

45 <pcap_filter >ip</pcap_filter >

46 <next>2</next>

47 </observer >

48

49 <filter id="2">

50 <countBased >

51 <interval >2</interval >

52 <spacing >2</spacing >

53 </countBased >

54 <next>3</next>

55 </filter >

56

57 <packetQueue id="3">

58 <maxSize >1000</maxSize >

59 <next>4</next>

60 </packetQueue >

61

62 <packetAggregator id="4">

63 <rule>

64 <templateId >998</templateId >

65 <flowKey >

66 <ieName >sourceIPv4Address </ieName >

67 </flowKey >

68 <flowKey >

69 <ieName >destinationIPv4Address </ieName >

70 </flowKey >

71 <flowKey >

72 <ieName >protocolIdentifier </ieName >

73 </flowKey >

74 <flowKey >

75 <ieName >sourceTransportPort </ieName >

76 </flowKey >

77 <flowKey >

78 <ieName >destinationTransportPort </ieName >

79 </flowKey >

80 <nonFlowKey >

81 <ieName >flowStartMilliSeconds </ieName >

82 </nonFlowKey >

83 <nonFlowKey >

84 <ieName >flowEndMilliSeconds </ieName >

38 38

85 </nonFlowKey >

86 <nonFlowKey >

87 <ieName >octetDeltaCount </ieName >

88 </nonFlowKey >

89 <nonFlowKey >

90 <ieName >packetDeltaCount </ieName >

91 </nonFlowKey >

92 <nonFlowKey >

93 <ieName >tcpControlBits </ieName >

94 </nonFlowKey >

95 </rule>

96 <expiration >

97 <inactiveTimeout unit="sec">10</inactiveTimeout >

98 <activeTimeout unit="sec">60</activeTimeout >

99 </expiration >

100 <pollInterval unit="msec">10000 </pollInterval >

101 <next>5</next>

102 <next>7</next>

103 </packetAggregator >

104

105 <ipfixQueue id="5">

106 <maxSize >100000 </maxSize >

107 <next>6</next>

108 </ipfixQueue >

109

110 <ipfixExporter id="6">

111 <collector >

112 <ipAddressType >4</ipAddressType >

113 <ipAddress >10.1.1.1 </ipAddress >

114 <transportProtocol >17</transportProtocol >

115 <port>1500</port>

116 </collector >

117 <maxRecordRate >10000 </maxRecordRate >

118 </ipfixExporter >

119

120 <ipfixAggregator id="7">

121 <rule>

122 <templateId >999</templateId >

123 <biflowAggregation >1</biflowAggregation >

124 <flowKey >

125 <ieName >sourceIPv4Address </ieName >

126 </flowKey >

127 <flowKey >

128 <ieName >destinationIPv4Address </ieName >

129 </flowKey >

130 <flowKey >

131 <ieName >protocolIdentifier </ieName >

132 </flowKey >

133 <flowKey >

134 <ieName >sourceTransportPort </ieName >

135 </flowKey >

136 <flowKey >

137 <ieName >destinationTransportPort </ieName >

138 </flowKey >

39 39

139 <nonFlowKey >

140 <ieName >flowStartMilliSeconds </ieName >

141 </nonFlowKey >

142 <nonFlowKey >

143 <ieName >flowEndMilliSeconds </ieName >

144 </nonFlowKey >

145 <nonFlowKey >

146 <ieName >octetDeltaCount </ieName >

147 </nonFlowKey >

148 <nonFlowKey >

149 <ieName >packetDeltaCount </ieName >

150 </nonFlowKey >

151 <nonFlowKey >

152 <ieName >tcpControlBits </ieName >

153 </nonFlowKey >

154 <nonFlowKey >

155 <ieName >revflowStartMilliSeconds </ieName >

156 </nonFlowKey >

157 <nonFlowKey >

158 <ieName >revflowEndMilliSeconds </ieName >

159 </nonFlowKey >

160 <nonFlowKey >

161 <ieName >revoctetDeltaCount </ieName >

162 </nonFlowKey >

163 <nonFlowKey >

164 <ieName >revpacketDeltaCount </ieName >

165 </nonFlowKey >

166 <nonFlowKey >

167 <ieName >revtcpControlBits </ieName >

168 </nonFlowKey >

169 </rule>

170 <expiration >

171 <inactiveTimeout unit="sec">60</inactiveTimeout >

172 <activeTimeout unit="sec">120</activeTimeout >

173 </expiration >

174 <pollInterval unit="msec">10000 </pollInterval >

175 <next>8</next>

176 </ipfixAggregator >

177

178 <trwPortscanDetector id="8">

179 <analyzerid >trwportscandetector </analyzerid >

180 <idmeftemplate >idmef/templates/trwportscan_template.xml ↘
→</idmeftemplate >

181 <next>9</next>

182 </trwPortscanDetector >

183

184 <idmefExporter id="9">

185 <sendurl >http:// localhost </sendurl >

186 </idmefExporter >

187 </ipfixConfig >

Bibliography

[BT08] Elisa Boschi and B. Trammell. Bidirectional Flow Export Using IP Flow
Information Export (IPFIX). RFC 5103, IETF, January 2008.

[Cla07] Benoit Claise. Packet Sampling (PSAMP) Protocol Specifications. Internet-
Draft (work in progress) draft-ietf-psamp-protocol-09.txt, IETF, December
2007.

[Cla08] Benoit Claise. Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information. RFC 5101, IETF,
January 2008.

[DC05] Falko Dressler and Georg Carle. HISTORY - High Speed Network Monitor-
ing and Analysis. In 24th IEEE Conference on Computer Communications
(IEEE INFOCOM 2005), Poster Session, Miami, FL, March 2005. IEEE.

[DCA+08] Thomas Dietz, Benoit Claise, Paul Aitken, Falko Dressler, and Georg Carle.
Information Model for Packet Sampling Exports. Internet-Draft (work in
progress) draft-ietf-psamp-info-11.txt, IETF, October 2008.

[DCF07] H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection Message
Exchange Format (IDMEF). Technical Report RFC 4765, IETF, March
2007.

[DM06] Falko Dressler and Gerhard Münz. Flexible Flow Aggregation for Adaptive
Network Monitoring. In 31st IEEE Conference on Local Computer Networks
(LCN): 1st IEEE LCN Workshop on Network Measurements (WNM 2006),
pages 702–709, Tampa, FL, November 2006. IEEE.

[DSMK08] Falko Dressler, Christoph Sommer, Gerhard Münz, and Atsushi Kobayashi.
IPFIX Flow Aggregation. Internet-Draft (work in progress) draft-dressler-
ipfix-aggregation-05.txt, IETF, July 2008.

[LD09] Tobias Limmer and Falko Dressler. Seamless Dynamic Reconfiguration of
Flow Meters: Requirements and Solutions. In 16. GI/ITG Fachtagung Kom-
munikation in Verteilten Systemen (KiVS 2009), Kassel, Germany, March
2009. Springer. to appear.

[LSMD06] Ronny T. Lampert, Christoph Sommer, Gerhard Münz, and Falko Dressler.
Vermont - A Versatile Monitoring Toolkit Using IPFIX/PSAMP. In
IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation
(MonAM 2006), pages 62–65, Tübingen, Germany, September 2006. IEEE.

41 41

[QBC+08] Jürgen Quittek, Stewart Bryant, Benoit Claise, Paul Aitken, and Jeff Meyer.
Information Model for IP Flow Information Export. RFC 5102, IETF, Jan-
uary 2008.

	1 Overview
	1.1 Vermont
	1.1.1 Reconfiguration
	1.1.2 Situation Awareness

	1.2 Vermont Management
	1.2.1 Controller
	1.2.2 Manager
	1.2.3 Webinterface

	2 Installation
	2.1 Vermont
	2.2 Vermont Management

	3 Structure and Configuration
	3.1 Vermont
	3.1.1 IDMEFExporter
	3.1.2 IpfixAggregator
	3.1.3 IpfixCollector
	3.1.4 IpfixExporter
	3.1.5 IpfixPrinter
	3.1.6 IpfixDbReader
	3.1.7 IpfixDbWriter
	3.1.8 IpfixDbWriterPg
	3.1.9 IpfixPayloadWriter
	3.1.10 IpfixQueue
	3.1.11 Observer
	3.1.12 PacketFilter
	3.1.13 PacketQueue
	3.1.14 PacketAggregator
	3.1.15 PacketIDMEFReporter
	3.1.16 PCAPExporter
	3.1.17 PSAMPExporter
	3.1.18 RecordAnonymizer
	3.1.19 SensorManager
	3.1.20 TRWPortscanDetector

	3.2 Vermont Management
	3.2.1 Manager
	3.2.2 Controller
	3.2.3 Webinterface
	3.2.4 Sensor-Actor System

	A Appendix
	A.1 Example configuration of a closed loop within a Vermont instance

