
Efficient Multi-Channel Simulation
of Wireless Communications

Fabian Bronner and Christoph Sommer
Heinz Nixdorf Institute and Dept. of Computer Science, Paderborn University, Germany

{fabian.bronner,sommer}@ccs-labs.org

Abstract—Simulation is a key tool for studying new system
designs, but its scalability is often limited by the complexity
of underlying models. We investigate to what degree different
channel models – in particular differently-complex signal
representations and loss models – impact simulation performance.
Measurements reveal that, if all effects relevant to typical
vehicular network simulations are to be captured, use of a
highly efficient signal representation that can exploit modern
CPU features allows to cut its performance impact by an
order of magnitude. Yet, measurements also reveal that in
typical vehicular network simulations, runtime performance is
dominated by that of loss modeling instead. To address this issue,
we also present a universal approach that can speed up loss
modeling. We show that this approach can improve the overall
runtime performance of simulations by more than an order of
magnitude with no loss in precision.

I. INTRODUCTION & MOTIVATION

Wireless network simulation is a prime method for perfor-
mance evaluation of future system designs. This is particularly
true when analytical evaluations are limited by the complexity
of the system under study and field tests are limited by its
scale – such as in the domain of vehicular networking [1], [2].

Of course, simulators should provide reliable data and results,
making correctness one of their key attributes. Thus, a prime
requirement is that the abstraction from real-world behavior of
wireless communication is performed at an appropriate level
for vehicular networking, particularly as far as modeling the
wireless channel is concerned.

The many approaches to this abstraction that can be found
in the literature differ widely in the level of fidelity afforded by
them. With higher fidelity, the simulation results can capture a
larger variety of effects that influence system performance
in the real world, thus more closely approximating real-
world behavior, and therefore allowing for more far reaching
conclusions – often, however, at the cost of more complex
models [3] and, hence, lower execution speed.

Thus, there is an apparent trade-off between scalability
and fidelity [4]. Ideally, a simulator should produce accurate
results within a short amount of time. Given a limited amount
of time and resources to work on a specific problem, this
increases the size of the available data set, which is particularly
important as wireless simulations are often stochastic in nature
(thus requiring a large number of independent simulation
runs) [5]. As a side effect, faster execution speed also means
that researchers get to spend more of their time on developing
concepts, testing, and evaluating the simulation outcome.

In this paper, we first study the requirements of vehicular
network simulation and the performance impact of different
signal representations for multi-channel wireless network
simulation (Section III), finding little difference (14 %) between
their performance if accuracy is to be preserved. We then move
on to describe a general way of speeding up multi-channel
wireless network simulation (Section IV) and demonstrate
speed-ups of more than an order of magnitude (4700 %) without
loss in fidelity.

II. RELATED WORK

In wireless communication systems, a sending node radiates
a signal over its antenna. If receiving nodes detect this signal
they can try to decode it in order to recover its information.
Many simulators model this process by (i) checking whether
the signal power is above a sensitivity or detection threshold
and then (ii) checking the outcome of a probabilistic process
based on the Signal to Interference plus Noise Ratio (SINR)
at the receiver. This is based on the assumptions that a signal
needs to be detected before decoding can be attempted and that
the SINR is a prime indicator of the quality of the received
signal. Assuming an Additive White Gaussian Noise (AWGN)
channel, the SINR can be expressed as

SINR =
signal power

noise power +
∑

interference power
. (1)

In brief, the SINR captures not just raw signal power, but also
other effects that might contribute to a signal being lost: First,
noise, a phenomenon caused by parasitic effects within the radio
channel or the receiving hardware itself. Second, interfering
signals, mainly caused by multiple access of the transmission
medium. For a higher value of the SINR, the receiver is more
likely to successfully decode a received signal. Naturally, the
interferer situation might not be constant during the reception
process. Then, multiple SINRs have to be computed, a strategy
sometimes referred to as piecewise SINR calculation [6].

One special kind of interference is Adjacent Channel
Interference (ACI) in frequency-multiplexed channels [7]. It
is rooted in the phenomenon that spectra of signals are not
perfectly rectangular and limited to the intended channel, but
(because of, e.g., physical limitations on filters or deficiencies
in the transmitter) are present on other, neighboring channels as
well. The power outside their main frequency range is smaller,
but it can influence the success of signal receptions for the
other affected channel.

2018 IEEE Vehicular Networking Conference (VNC)

978-1-5386-9428-2/18/$31.00 ©2018 IEEE

From Equation (1) it is clear that the radio channel between
transmitter and receiver has a major impact on the signal. The
spectral shape of a signal at the receiver side usually looks
differently than the one originally radiated by the sender. This
is caused by antenna gains and different path loss effects that
attenuate a signal. This link budget is often expressed [8] as
the sum (in dB) of the sending power Pt, the antenna gains
Gt and Gr, and all loss effects L, as

Pr[dBm] = Pt[dBm] +Gt[dB] +Gr[dB] −
∑
x

Lx[dB], (2)

all of which can either be simple scalar quantities or multi-
dimensional data structures.

To give an example, one basic loss effect model is the
free space path loss model. It captures that, as the distance
between sending and receiving node increases, the signal
power decreases. The impact of this effect is also frequency
dependent. With increasing distance d and frequency f the
path loss becomes higher. Also given the speed of light c in
the transmission medium, the most basic free space path loss
model computes loss as

LFS =

(
4πdf

c

)2

, (3)

which can either be thought of affecting the received power
uniformly across all frequencies (flat fading) or attenuating
different frequency components differently.

There are various approaches to represent a wireless signal
and the changes it undergoes according to Equation (2) within
a simulator. They range from rather simple approaches that
require less computational effort but suffer in accuracy to more
complex representations that need more complex computations
but offer a higher accuracy.

One simple approach is to describe a signal by just three
major characteristics: a start time, a duration, and a sending
power. So, it is a time invariant power level over a given
time. Often, the signal holds further attributes such as the
wavelength of the carrier frequency to support flat fading. This
style of modeling a signal is, for example, used in GloMoSim
to compute the impact of various path loss effects [9]. Yet,
this way of modeling a signal makes it hard to efficiently
reason about, for example, capacity gain of Frequency-Division
Multiple Access (FDMA).

Describing the frequency dimension of a signal more fine
grained can be done by explicitly modeling a signal as being
present on a center frequency (and a given bandwidth around it).
This representation allows to define rectangular shaped spectra
for the signals as in Figure 1a. Again, the signal is time invariant.
This style of modeling is, for example, one of the options
offered by the OMNeT++ simulator’s INET framework, which
serves as the basis for a wide range of scientific work [10],
[11]. While this allows for efficient modeling, it still hinders
efficient reasoning about, e.g., ACI.

When the signal has a more complex spectral shape, one
solution is to divide the frequency dimension into bands
(frequency ranges) and describe the power within each band

Frequency
Time Sp

ec
tra

l p
ow

er
 d

en
sit

y

(a) time invariant static power with frequency and bandwidth relation

Frequency
Time Sp

ec
tra

l p
ow

er
 d

en
sit

y

(b) frequency band model

Frequency
Time Sp

ec
tra

l p
ow

er
 d

en
sit

y

(c) multi-dimensional model

Figure 1. Different approaches for signal representation in various simulators.

individually. These values then describe the spectral power
density of the signal. As in the previous representations, the
represented signals are time invariant. One example for such a
signal description is given in Figure 1b. This style of modeling
is one of those offered by, for example, NS-3 [12]. It allows
free configuration of the number, center frequencies, and widths
of the bands. NS-3 offers a set of different path loss effects
like a two-ray model, shadowing, etc. and applies them on
each band [13].

Even more complex signal shapes can be modeled by
describing signals as a multi-dimensional function of spectral
power density. Typically, this function is defined in the
frequency and time domains, as shown in Figure 1c. This makes
it possible to describe time-variant signals as well. This style of
modeling is adopted, for example, in the OMNeT++ simulator’s
MiXiM framework [14], which was later incorporated into
other simulation tools like Veins or the aforementioned INET
Framework.

III. PERFORMANCE IMPACT OF SIGNAL REPRESENTATIONS

We study the performance impact of signal representations
based on the fully-featured multi-dimensional model (shown
in Figure 1c) as well as a best-case model, a minimalistic
representation that still fulfills the aforementioned goals of
vehicular network simulation. We argue that a signal should
be able to capture the following aspects:

2018 IEEE Vehicular Networking Conference (VNC)

• Timing: A signal has a lifespan; it is only present for a
given time period. This means that there are two major
attributes that describe the timing behavior of a signal:
start time and duration. Put another way, for a given
timestamp t, a signal is present for tstart ≤ t < tend.

• Signal strength: Each signal has an individual power,
depending on the transmit power chosen by the sender
(e.g., according to ETSI ITS-G5 rules), antenna gains,
and path loss effects. Note that this does not need to
be a time-varying quantity: For all established wireless
technologies for vehicular networking, the signal power
is constant during transmission (though this might mean
modeling time-stepped signals as an aggregate of multiple
signals of one power level each).

• Multi-channel: A signal contains information on which
frequencies it is present, allowing a simulation to explore
efficiency gains of using more than one frequency channel,
e.g., according to IEEE 802.11p.

• Adjacent channel interference: Signals might cause
parasitic power on neighboring channels that interfere with
transmissions in such channels, particularly important in
multi-channel wireless networks that span large distances
(near-far problem).

• Frequency selective fading: The attenuation of different
path loss effects can affect different frequency components
of the signal to different degrees, e.g., for modeling the
compound impact of multiple hard-hitting, but selective
loss effects such as shadowing by buildings and vehicles.

These needs are closely aligned with the signal representation
chosen by the NS-3 simulator discussed previously and
illustrated in Figure 1b. When its frequency bands are perfectly
aligned (which they are by default), there are no gaps. Values
outside the lowest or highest frequency band have an undefined
power density.

We go one step further in simplifying the signal representa-
tion and allow the user to only retrieve power densities at fixed
frequencies (meaning that bandwidth is now only implied, not
explicitly stored). This is possible as a model developer will
know the exact points at which the spectral power density for
signal processing must be known. Addressing an undefined
frequency results in an error.

Assuming there are N defined points for querying spectral
power densities at a fixed set of frequencies F , with

F =

f0
f1
...

fN−1

 , (4)

any signal S can be represented by only a start time, a stop
time, and a vector of power values representing spectral power
densities at the corresponding frequencies, with

Ststart,tend =

S0

S1

...
SN−1

 . (5)

Frequency

Po
we

r

(a) no ACI

Frequency

(b) with ACI

Frequency

(c) higher resolution at
transition to ACI part

Figure 2. Example spectral shapes of different signals.

This allows quick arithmetic with signals, incurs small memory
overhead, and opens up the possibility of exploiting vector
operations of modern CPUs.

We impose no limitations regarding number of frequencies,
their values, and the space among them. So, the user has a
lot of options to describe the frequency domain. Figure 2
illustrates different examples of how to represent a signal’s
spectrum. In Figure 2a the signal has the same power levels
at all defined points, e.g., because it has a rectangular shape.
The representation in Figure 2b contains additional frequencies,
e.g., to describe the effect of ACI. For a higher resolution at
the border frequencies of the main signal, in Figure 2c the
frequencies are denser at those transitions.

A. Calculations on Signals

Moving from data stored for representing a signal to
computations performed on them, the following operations
are commonly implemented:

a) Modification of a signal: Different effects cause an
increase or decrease of the signal power. These attenuations
can either be the same for the whole frequency domain or
frequency dependent. In order to apply attenuation factors on
signals, the power density value for a specific frequency index
is multiplied with an attenuation factor. This methodology
allows to perform frequency dependent attenuations on signals.
To model a uniform attenuation, the same factor can be applied
on all values.

Note that there is no fundamental computational difference
between applying antenna gain models or loss models to a
signal – either model can both amplify and attenuate signals.

b) Querying signal or channel power level: For checking
whether a signal exceeds the threshold for triggering a decoding
attempt, it is necessary to be able to inquire about its power
level. If multiple signals are present at the same time at a
receiver, a common use-case is to compute their total power
to decide whether a channel is to be considered idle or busy.

As it is only possible to define constant signals, multiple
of them cannot be summed without loss of data. Their
instantaneous power levels at a given time, however, can.

c) Querying SINR: In order to decide if a signal can be
received or not, the receiver needs to compute the SINR for
the corresponding signal. This involves the division among two
signals and introduces the necessity to represent a constant,
homogeneous noise floor.

2018 IEEE Vehicular Networking Conference (VNC)

Seg 1 Seg 2 Seg 3

Interferer 5
Interferer 4
Interferer 3
Interferer 2
Interferer 1

Signal

(a) an exemplary situation of a signal and multiple interferers

t1 t2 t3 t4 t5 t6
Time

S
I3 + I4 + N

S
I2 + I3 + N

S
I2 + N

SI
NR

(b) computed SINRs at a single frequency of the spectrum

Figure 3. Example of segment-wise SINR estimation.

During the time span of the signal, the interferer situation
might not be constant. Coupled with enforcing non-time-
varying power levels in a signal, this calculation is therefore a
bit more involved.

For each interferer situation – called segment in the fol-
lowing – a new SINR calculation is required. The algorithm
determines the segments by computing all changes during the
reception of the signal. There are two types of such changes:
whenever an interfering signal starts and whenever it ends. All
changes are sorted by time with the earliest one first.

The algorithm initializes a variable representing the sum of
all interference of a segment. Its initial value is the spectral
sum of all interference that is present when the signal starts.
With this information, it is possible to compute the SINR for
the first segment. Next, there is an iteration over all changes
left. If multiple changes have the same time stamp, all of
them are applied at once. Each time the algorithm evaluates a
change – or multiple in case of equal timestamps – there is a
new segment which requires to calculate a new SINR.

Each segment thus represents a constant interference situation
at the receiving node. For each defined frequency the signal
power density is divided by the sum of interference plus noise.

Figure 3 illustrates this procedure by way of an example: A
signal at t2 is suffering from multiple sources of interference,
starting at t1, t3, and t4 respectively (Figure 3a). The algorithm
splits the signal into three segments, each with its own SINR
(Figure 3b).

It is now straightforward to calculate, e.g., bit error rate,
segment error rate, or packet error rate for a given transmission.
The most direct approach might be to search for the lowest
SINR across all segments and frequency components and derive
a packet error rate from that. So, for a signal that has its usable
data spread over n frequencies and that requires m segments for
SINR calculation, the lowest or worst case SINR is calculated

as

SINRworst case = min
m

min
n

(
Ssignal,n,m

Snoise +
∑
Sinterferer,n,m

)
. (6)

B. Speedup of Efficient Signal Representation

For evaluating the performance of different signal represen-
tations, we use Veins [15]. It is an Open Source1 vehicular
network simulation framework based on the OMNeT++ discrete
event simulation kernel and relies on SUMO [16] for simulating
road traffic.

We run the exact same simulation with two different
signal representations. The first signal representation is the
minimalistic one described above, which we implement on top
of Veins 4.6. We compare its performance with that of the fully-
featured multi-dimensional approach of MiXiM which is also
included in Veins 4.6. As discussed (and shown in Figure 1c),
this signal representation describes a signal by arbitrary points
in the time, frequency, and spectral power density dimensions.
Interpolation is used to obtain spectral power density values at
arbitrary points.

To investigate the speed afforded by both signal representa-
tions, we track the amount of simulation time that could be
executed within one real (wallclock) time second. We sample
this value every wallclock second and average over all collected
samples to derive the average execution speed. We call this
metric speed in the following.

All measurements take place on computers equipped with
an Intel Core i7-2600 CPU and 16 GByte of main memory,
running Linux kernel version 4.4 of an Ubuntu 16.04 operating
system. The software platform consists of OMNeT++ 5.1.1
and SUMO 0.30.0. All log data is either turned off or written
to a RAM disk to mitigate I/O lag.

As our benchmark, we run a typical vehicular networking
simulation study: We simulate vehicles driving in a city and
periodically broadcasting 42 Byte messages (beacons) with a
transmit power of 20 mW. Each simulated vehicle performs all
required computations to decide whether it attempts decoding
a beacon (sensitivity threshold −89 dBm) and whether it can
successfully decode a received beacon. We perform this
experiment with different beacon rates, that is, we choose
different time intervals in-between a vehicle generating one
beacon and the next.

The used scenario is that of traffic in the city of Pader-
born [17], a medium-sized city with different types of environ-
ments like freeways, outlying housing areas, and the inner city.
It thus includes a large number of radio obstructions.

For clarity, we configure only two loss models: a free space
path loss model and an obstacle shadowing model [8] to account
for loss by buildings. Therefore, there are two attenuation
factors that impact signals. We configure the simulation to a
length of 240 s, increasing the number of vehicles linearly from
210 to 1050 vehicles, each following realistic routes for a time
of 8:00 AM. We run each simulation ten times with different
seeds for the pseudorandom number generator.

1http://veins.car2x.org

2018 IEEE Vehicular Networking Conference (VNC)

10 1 100 101

Beacon rate in Hz
10 3

10 2

10 1

100

Av
er

ag
e s

pe
ed

Multi dimensional

Discrete power spectrum

Figure 4. Average speed (computed simulation seconds per real time second)
with confidence intervals (99 %) of the Paderborn scenario when using the
multi-dimensional and discrete spectrum power model for signal representation
in Veins for different beacon rates.

Figure 4 illustrates our results. Here, and in similar diagrams
in this paper, we plot the mean speed and the confidence interval
of the mean for a 99 % confidence level.

When comparing the full-featured (multi-dimensional) and
the minimalistic (discrete power spectrum) signal represen-
tation, there is a small but reproducible offset between the
speeds achieved with them: We compute an overall speed
difference between approaches of approximately 14 %. For
every beacon rate, the implementation using a minimalistic
signal representation can run the scenario a little faster. Still,
given that the two signal representations represent polar
opposites in complexity, the difference is quite small.

For comparison, we also set up another scenario that had
the obstacle shadowing model disabled (thus only modeling
free space path loss). Here, the impact of the used signal
representation on speed-up reaches one order of magnitude
(1000 %, data not shown). This underlines that our findings
are specific to simulations where loss model computations
consume a substantial portion of time, in particular vehicular
network simulation in cities.

IV. IMPROVING THE PERFORMANCE OF MULTI-CHANNEL
SIMULATION MODELS VIA THRESHOLDING

In order to further speed up simulations, we first want to
precisely identify the components of a simulation that require
the most computation time. We profile the execution of the
aforementioned Paderborn simulation for a beacon rate of
1 Hz and the minimalistic (discrete power spectrum) signal
representation. We employ the Linux perf toolkit which makes
use of hardware counters to enable profiling. Its userspace tools
enable us to periodically record which method of a binary
is currently being executed. This way, the obtained results
approximate the share a given method has in the total number

0 20 40 60 80 100
Amount of overall CPU cycles for the Veins default demo in %

Compute SINR
of a received signal

Check if channel is
considered free

Calculate and apply
loss models

0.01

0.24

93.78

(a) simulation models for channel modeling

0 20 40 60 80 100
Amount of overall CPU cycles for the Veins default demo in %

Free space path loss

Antenna gains

Obstacle shadowing

0.01

0.02

93.67

(b) loss models

Figure 5. Results of profiling individual simulation components (by fraction
of total CPU cycles).

of CPU cycles spent for a simulation run. After the execution
of the simulation, perf can produce an output indicating this
share of each method. It is possible to retrieve the share of
each method itself and the share including all called methods.
This makes it possible to determine which methods consume
most of the CPU cycles for a given simulation.

Figure 5 plots the measured share of methods. It shows the
ratio of the CPU cycles spent within a given model in relation
to the total number of CPU cycles spent for executing the
whole simulation. These methods do not call each other, so
the shares do not overlap.

As can be seen, the method computing signal attenuation
consumes by far most of the CPU cycles. Investigating this
method in more detail as done in Figure 5b reveals that each
loss model consumes a different amount of CPU cycles. The
most expensive attenuation model by far is obstacle shadowing.

A straightforward next step would be to optimize this
loss model (e.g., using quadtrees, pre-generating collision
maps, caching, or similar methods) [18]. However, instead
of improving the computation of this specific model, we aim
for a general approach.

In more detail, we aim to skip the computation of models
whenever possible. In order to understand in which way we
can achieve the avoidance of attenuation model computations,
we quickly repeat what a simulated receiver needs to know
about a signal or channel:

(i) is a signal below a sensitivity threshold,
(ii) is a channel free (based on all present signals), and

(iii) what is the SINR of a transmission.
Commonly, answering these questions requires the position

and orientation of the sender and receiver to compute attenua-
tion factors, often involving independent streams of pseudoran-
dom numbers. Therefore, each receiving node computes and
applies the loss models individually.

Following the approach outlined in Equation (2), loss
calculations in wireless network simulation are often performed
by iteratively applying all configured loss models to each

2018 IEEE Vehicular Networking Conference (VNC)

received
signal

model 1:
gain/loss

model 2:
loss

below
threshold?

true

false

Figure 6. Common approach to checking whether the receive power level
at a receiver exceeds a configured threshold in wireless network simulation:
Application of all configured loss models to each received signal to derive its
power level and checking the calculated power level against the configured
threshold.

received signal to derive its receive power level. These receive
power levels can then be checked, e.g., against a configured
threshold to see if a signal meets the receiver’s sensitivity
criteria. The diagram in Figure 6 outlines this procedure.

Based on the results illustrated in Figure 5 (loss models are
costly, but to a varying degree), we advocate to instead employ
a modified algorithm which we call thresholding. Its main idea
is based on that of short-circuit evaluation, that is, skipping
one or multiple of its computations if this does not affect the
requested result. It thus avoids the calculation of as many loss
models as possible. We describe its design below.

For the mechanism introduced in this section, it becomes
necessary to group loss models into two categories:

(i) loss models that truly only decrease signal power (free
space path loss, obstacle shadowing) and

(ii) loss models that might result in a gain of signal power
(like those considering constructive interference due to
multi-path effects).

We note that, if the maximum gain of a model of the second
category is known, it is straightforward to split it into two
models: One applies this maximum gain to the signal and is
computationally very cheap; the other functions as before, but
subtracts this maximum gain value (thus now falling into the
first category).

Reflecting back on the three things a receiver needs to know
about a signal or channel discussed earlier, the first question
can be answered by a true/false-statement. It does not ask for
a concrete power value, which enables thresholding. The same
goes for the second question. The third question involves only
a subset of signals. For some signals, e.g., for those below the
sensitivity threshold of the receiver or those that are received
while sending, it is not required (or even not possible) to
compute an SINR. We detail how thresholding allows the three
questions to be answered more efficiently below.

a) Determining whether a received signal is above the
sensitivity threshold: Figure 7 illustrates the proposed thresh-
olding approach by way of an example. A received signal
only has loss models applied when their results are needed to
determine the result of, in this case, a power threshold check.
While this delayed execution already opens up the possibility
of promise/future based programming (and, hence, exploiting
multi-core CPUs), the true strength of this approach lies in

received
signal

buffer

model 1:
gain/loss

below
threshold?

true

model 2:
loss

below
threshold?

true

false

Figure 7. Steps performed in the proposed thresholding approach when
receiving a signal: On-demand, iterative calculation of loss models to check
reception power against a threshold – with short-circuit evaluation once a
definite result can be determined. Steps added by the thresholding approach
are highlighted.

the fact that not always all loss models need to be applied to
arrive at a result. When a decision should be made on a signal,
the first loss models that need to be applied are the ones that
might result in a gain of received signal power. Already then,
however, there are two possible results for a first threshold
check. The signal power is either already below the threshold
or still above or equal. For the first case it is not necessary to
apply any further loss models as the remaining loss models
can only cause the power to further decrease. For the second
case (the power still exceeds the threshold or is equal), the
next loss model is applied and the process is repeated.

This procedure might continue until all loss models are
applied, allowing it to yield a definite result of above threshold.
Sometimes, however, the algorithm can abort the calculation
sooner – with a definite result of below threshold as soon as
any loss model takes the received power below the threshold.
This methodology illustrates that calculating the received power
value is not necessarily required to answer whether a signal
exceeds a given threshold or not.

Algorithm 1 Channel free decision when using thresholding.
Input: List of all received signals S at given time
Input: Ordered list of all loss models that might increase

received power L̂
Input: Ordered list of all other loss models L

1: for all L in L̂ do
2: Alter all S in S according to L
3: end for
4: for all L in L do
5: Compute received power of sum of S
6: if power < threshold then
7: return true
8: end if
9: Alter all S in S according to L

10: end for
11: Compute received power of sum of S
12: return power < threshold

2018 IEEE Vehicular Networking Conference (VNC)

10 1 100 101

Beacon rate in Hz
10 3

10 2

10 1

100

101
Av

er
ag

e s
pe

ed

Without thresholding

With thresholding

Figure 8. Average speed (computed simulation seconds per real time second)
with confidence intervals (99 %) of the Paderborn scenario when using the
multi-dimensional and no thresholding and the discrete spectrum power model
with thresholding in Veins for different beacon rates.

Note that the thresholding approach differs from the
commonly-used shortcut of selecting a fixed maximum distance
for a signal to travel in the simulation. While this approach
can also speed up simulations, it only does so for signals that
are too weak to even cause interference, not merely too weak
to be decodable.

b) Determining whether the channel is free: The second
question raised earlier – checking if a channel is free – requires
the calculation of the sum of multiple received powers and
checking it against a threshold. Thresholding can be helpful
for this task again. The strategy is outlined in Algorithm 1.
Starting with no loss model applied on all involved signals, the
algorithm first applies all loss models that might increase the
received power of the mix of signals currently on the channel.
It then checks the received power against the threshold, short-
circuiting the evaluation if the received power is below the
threshold. In a next step, the first loss model is used to decrease
the power of all signals currently on the channel and the process
is repeated. This procedure continues until the received power
has fallen below the given threshold or until all loss models
have been applied.

Note that a simulator often first investigates whether any of
the signals currently on the channel might trigger the decoding
process to start before the simulator investigates whether the
channel is free. Thus, a subset of signals will already have
been altered to have a subset of loss models applied (see
Figure 7). Naturally, these calculations need not be performed
again, saving further computation time.

c) Computing the SINR value: For the final SINR compu-
tation, the signal and all interfering signals need to have all loss
models applied. Afterwards, the SINR computation is done as
described previously. Yet, as many of these computations have
already been performed for any of the previous steps – and as

10 1 100 101

Beacon rate in Hz
10 3

10 2

10 1

100

101

Av
er

ag
e s

pe
ed

Obstacle shadowing first

Free space path loss first

Figure 9. Average speed (computed simulation seconds per real time second)
with confidence intervals (99 %) of the Paderborn scenario with enabled
thresholding mechanism for different beacon rates, but two possible orders of
loss models.

many signals could already be ruled out as not triggering a
decoding process – this step also benefits from the presented
thresholding approach.

V. RESULTS

Implementing the thresholding approach implies performing
a number of additional operations during simulation, such as
maintaining a list of which loss models have already been
applied to which signal and performing a higher number of
comparisons between signal power and threshold.

It is thus not immediately obvious that thresholding can be
beneficial to the runtime of vehicular network simulations. We
therefore investigate the impact of the described thresholding
mechanism in detail.

For this, we extend the previously described implementation
of a minimalistic signal representation for Veins 4.6 with a
(purely single-threaded) implementation of the thresholding
approach. We then run the previously described simulation
study of a vehicular network operating in Paderborn again,
now comparing the simulation performance with and without
the implemented thresholding approach.

Figure 8 illustrates that (on top of any gain that could be
delivered by choosing a minimalistic signal representation)
applying the thresholding approach to channel modeling allows
the simulation to run up to 4700 % faster. This speed-up is
particularly noticeable for high beacon rates, beyond the point
where the simulation time of regular simulations advances
at approximately the same rate as wallclock time. Here,
computation of loss models is the limiting factor of simulation
speed – particularly for the investigated city scenario where
densely-packed buildings obstruct radio communication and
thresholding can avoid particularly expensive calculations.

2018 IEEE Vehicular Networking Conference (VNC)

We back up this claim by conducting a new set of simulations
where we reversed the order of configured loss models, so that
the most computationally expensive model (obstacle shadowing)
is executed first.

Figure 9 illustrates the results of this experiment. As can
be seen, this order of execution saves considerably less time.
In fact, results are on par with those obtained in a simulation
without the thresholding approach applied. The reason lies in
the big difference in execution time between one loss model
and the other.

Thus, for this simulation study of an environment dominated
by radio obstacles, there is exactly one optimal order in which
loss models should be applied when following a thresholding
approach. For other simulation studies (particularly when using
different loss models) the optimal order might not be as
straightforward to determine and might differ among simulated
nodes. Still, even with the exact opposite order of execution,
the performance of the simulation is no worse than that of a
variant without the thresholding approach.

VI. CONCLUSION

The channel models of wireless network simulators differ
widely in how they represent wireless signals – from simple
scalar models to complex multi-dimensional spectral power
density distributions. This affords different levels of fidelity.

In this paper, we studied the requirements of vehicular
networking to establish criteria that such representations ought
to fulfill. We then moved to investigate the impact of different,
but suitable representations on the runtime performance of
simulations by comparing two extreme cases of such models:
First, a highly flexible, but computationally expensive multi-
dimensional spectral power density representation. Second, a
minimalistic non-time-varying discrete power density model.

We found that, while in certain cases choosing a different
signal representation can account for up to a magnitude
difference in simulation run time, in typical vehicular network
simulations the impact is very limited. Instead, simulation
run time is dominated by the computation of loss models.
Further, there are differences of orders of magnitude in terms
of computational effort among different loss models.

We therefore propose the thresholding approach to loss
modeling in vehicular network simulations.

It is a generic approach that is based on the idea of short-
circuit evaluation of a chain of multiple loss models, avoiding
the calculation of loss models when their result cannot influence
the simulation outcome.

We investigated the speed-up achievable with this uni-
versal method when applied to a typical vehicular network
simulation and found it to be in the order of more than a
magnitude (4700 %) with no loss in precision.

Our method can be combined with improvements of indi-
vidual loss models to achieve even better results.

As future work, we plan to build on the insight that speed-up
is now dependent on the order that loss models are calculated,
making the automatic ordering of loss models at runtime a
promising next step.

REFERENCES

[1] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, Nov. 2014.

[2] T. Yashiro, T. Kondo, H. Yagome, M. Higuchi, and Y. Matsushita, “A
Network Based on Inter-vehicle Communication,” in IEEE Intelligent
Vehicles Symposium (IV 1993), Tokyo, Japan: IEEE, Jul. 1993, pp. 345–
350.

[3] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario,
and J. Garcia-Haro, “Simulation Scalability Issues in Wireless Sensor
Networks,” IEEE Communications Magazine, vol. 44, no. 7, 64–73, Sep.
2006.

[4] E. Ben Hamida, G. Chelius, and J. M. Gorce, “Impact of the Physical
Layer Modeling on the Accuracy and Scalability of Wireless Network
Simulation,” SAGE Simulation, vol. 85, no. 9, pp. 574–588, Jun. 2009.

[5] G. Ewing, K. Pawlikowski, and D. McNickle, “Akaroa2: Exploiting
Network Computing by Distributed Stochastic Simulation,” in European
Simulation Multiconference (ESM 1999), Warsaw, Poland, 1999, pp. 175–
181.

[6] M. Lacage and T. R. Henderson, “Yet Another Network Simulator,” in
2006 Workshop on Ns-2: The IP Network Simulator, Pisa, Italy: ACM,
Oct. 2006.

[7] C. Campolo, C. Sommer, F. Dressler, and A. Molinaro, “On the Impact
of Adjacent Channel Interference in Multi-Channel VANETs,” in IEEE
International Conference on Communications (ICC 2016), Kuala Lumpur,
Malaysia: IEEE, May 2016, pp. 2626–2632.

[8] C. Sommer, D. Eckhoff, R. German, and F. Dressler, “A Computationally
Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing in
Urban Environments,” in 8th IEEE/IFIP Conference on Wireless On
demand Network Systems and Services (WONS 2011), Bardonecchia,
Italy: IEEE, Jan. 2011, pp. 84–90.

[9] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a Library for Parallel
Simulation of Large-scale Wireless Networks,” in 12th Workshop on
Parallel and Distributed Simulation (PADS 1998), Banff, Canada: IEEE,
May 1998, pp. 154–161.

[10] R. Nagel and S. Eichler, “Efficient and Realistic Mobility and Chan-
nel Modeling for VANET Scenarios Using OMNeT++ and INET-
Framework,” in 1st ACM/ICST International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems
(SIMUTools 2008), Marseille, France: ICST, Mar. 2008, pp. 1–8.

[11] T. Steinbach, H. D. Kenfack, F. Korf, and T. C. Schmidt, “An Extension
of the OMNeT++ INET Framework for Simulating Real-time Ethernet
with High Accuracy,” in 4th International Conference on Simulation
Tools and Techniques (SIMUTools 2011), Barcelona, Spain: ICST, Mar.
2011, pp. 375–382.

[12] N. Baldo and M. Miozzo, “Spectrum-aware Channel and PHY layer
modeling for ns3,” in 4th International ICST Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS 2009), Pisa, Italy:
ICST, Oct. 2009, 2:1–2:8.

[13] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 project goals,”
in 1st Workshop on NS-2: The IP Network Simulator (WNS2 2006), Pisa,
Italy: ACM, Oct. 2006.

[14] K. Wessel, M. Swigulski, A. Köpke, and D. Willkomm, “MiXiM –
The Physical Layer: An Architecture Overview,” in 2nd ACM/ICST
International Workshop on OMNeT++ (OMNeT++ 2009), Rome, Italy:
ACM, Mar. 2009.

[15] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,”
IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, Jan.
2011.

[16] D. Krajzewicz, G. Hertkorn, C. Rössel, and P. Wagner, “SUMO
(Simulation of Urban MObility); An Open-source Traffic Simulation,”
in 4th Middle East Symposium on Simulation and Modelling (MESM
2002), Sharjah, UAE, Sep. 2002, pp. 183–187.

[17] D. S. Buse, C. Sommer, and F. Dressler, “Integrating a Driving Simulator
with City-Scale VANET Simulation for the Development of Next
Generation ADAS Systems,” in 37th IEEE Conference on Computer
Communications (INFOCOM 2018), Demo Session, Honolulu, HI: IEEE,
Apr. 2018.

[18] A. Mantler and J. Snoeyink, “Intersecting Red and Blue Line Segments
in Optimal Time and Precision,” in Japanese Conference Discrete and
Computational Geometry (JCDCG 2000): Revised Papers, Tokyo, Japan:
Springer, Nov. 2000, pp. 244–251.

2018 IEEE Vehicular Networking Conference (VNC)

