hensel2015holistic
Abstract
Accurate models of technical systems are the basis for many tasks like system analysis, predictions, or controller design. Usually, the values of several important parameters cannot be determined by theoretical analysis only; instead, process identification is necessary. For several applications, the efficiency of the identification procedure is very important, for example, for the creation of thermal models of machine tools, because of the large time constants and the expensive machine time. The goal of the authors is the support of this task as far as possible by software. This paper contributes to that goal twofold: on the one hand, it provides a collection of influences which have to be considered for supporting the identification procedure. On the other hand, concepts for computer-based support are presented\textemdash ontologies and automatic design methods based on evolutionary algorithms.
Quick access
- Original Version (at publishers web site)
- BibTeX
Contact
- Burkhard Hensel
- Thomas Wagner
- André Gellrich
- Klaus Kabitzsch
- Bernd Kauschinger
BibTeX reference
@article{hensel2015holistic,
author = {Hensel, Burkhard and Wagner, Thomas and Gellrich, Andr{\'{e}} and Kabitzsch, Klaus and Kauschinger, Bernd},
title = {{Holistic Ontology-Based Assistance System for Efficient Process Model Parameter Identification}},
journal = {Journal of Computational Engineering},
doi = {10.1155/2015/812835},
issn = {2356-7260, 2314-6443},
month = {February},
pages = {1--14},
publisher = {Hindawi},
volume = {2015},
year = {2015},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
The following applies to all papers listed above that have IFIP copyrights: © IFIP, (YEAR). This is the author's version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL#, ISS#, (DATE)}, http://IFIP DL URL.